"""distutils.cygwinccompiler Provides the CygwinCCompiler class, a subclass of UnixCCompiler that handles the Cygwin port of the GNU C compiler to Windows. It also contains the Mingw32CCompiler class which handles the mingw32 port of GCC (same as cygwin in no-cygwin mode). """ # problems: # # * if you use a msvc compiled python version (1.5.2) # 1. you have to insert a __GNUC__ section in its config.h # 2. you have to generate a import library for its dll # - create a def-file for python??.dll # - create a import library using # dlltool --dllname python15.dll --def python15.def \ # --output-lib libpython15.a # # see also http://starship.python.net/crew/kernr/mingw32/Notes.html # # * We put export_symbols in a def-file, and don't use # --export-all-symbols because it doesn't worked reliable in some # tested configurations. And because other windows compilers also # need their symbols specified this no serious problem. # # tested configurations: # # * cygwin gcc 2.91.57/ld 2.9.4/dllwrap 0.2.4 works # (after patching python's config.h and for C++ some other include files) # see also http://starship.python.net/crew/kernr/mingw32/Notes.html # * mingw32 gcc 2.95.2/ld 2.9.4/dllwrap 0.2.4 works # (ld doesn't support -shared, so we use dllwrap) # * cygwin gcc 2.95.2/ld 2.10.90/dllwrap 2.10.90 works now # - its dllwrap doesn't work, there is a bug in binutils 2.10.90 # see also http://sources.redhat.com/ml/cygwin/2000-06/msg01274.html # - using gcc -mdll instead dllwrap doesn't work without -static because # it tries to link against dlls instead their import libraries. (If # it finds the dll first.) # By specifying -static we force ld to link against the import libraries, # this is windows standard and there are normally not the necessary symbols # in the dlls. # *** only the version of June 2000 shows these problems # * cygwin gcc 3.2/ld 2.13.90 works # (ld supports -shared) # * mingw gcc 3.2/ld 2.13 works # (ld supports -shared) # This module should be kept compatible with Python 2.1. __revision__ = "$Id$" import os,sys,copy from distutils.ccompiler import gen_preprocess_options, gen_lib_options from distutils.unixccompiler import UnixCCompiler from distutils.file_util import write_file from distutils.errors import DistutilsExecError, CompileError, UnknownFileError from distutils import log def get_msvcr(): """Include the appropriate MSVC runtime library if Python was built with MSVC 7.0 or later. """ # FIXME: next code is from issue870382 # MS C-runtime libraries never support backward compatibility. # Linking to a different library without to specify correct runtime # version for the headers will link renamed functions to msvcrt. # See issue3308: this piece of code is python problem even # with correct w32api headers. # Issue: for MSVC compiler we can get the version and from version # to determine mcvcrt as code below. But what about if python is # build with GCC compiler? # Output of sys.version is information for python build on first # line, on the next line is information for the compiler and the # output lack information for the C-runtime. msc_pos = sys.version.find('MSC v.') if msc_pos != -1: msc_ver = sys.version[msc_pos+6:msc_pos+10] if msc_ver == '1300': # MSVC 7.0 return ['msvcr70'] elif msc_ver == '1310': # MSVC 7.1 return ['msvcr71'] elif msc_ver == '1400': # VS2005 / MSVC 8.0 return ['msvcr80'] elif msc_ver == '1500': # VS2008 / MSVC 9.0 return ['msvcr90'] else: raise ValueError("Unknown MS Compiler version %s " % msc_ver) else: return [] class CygwinCCompiler (UnixCCompiler): compiler_type = 'cygwin' obj_extension = ".o" static_lib_extension = ".a" shared_lib_extension = ".dll" # FIXME: dylib_... = ".dll.a" is not enought for binutils # loader on win32 platform !!! dylib_lib_extension = ".dll.a" static_lib_format = "lib%s%s" shared_lib_format = "%s%s" exe_extension = ".exe" def __init__ (self, verbose=0, dry_run=0, force=0): UnixCCompiler.__init__ (self, verbose, dry_run, force) (status, details) = check_config_h() self.debug_print("Python's GCC status: %s (details: %s)" % (status, details)) if status is not CONFIG_H_OK: self.warn( "Python's pyconfig.h doesn't seem to support your compiler. " "Reason: %s. " "Compiling may fail because of undefined preprocessor macros." % details) # Next line of code is problem for cross-compiled enviroment: # NOTE: GCC cross-compiler is prefixed by the -- # and by default binaries are installed in same directory # as native compiler. self.gcc_version, self.ld_version, self.dllwrap_version = \ get_versions() self.debug_print(self.compiler_type + ": gcc %s, ld %s, dllwrap %s\n" % (self.gcc_version, self.ld_version, self.dllwrap_version) ) # ld_version >= "2.10.90" and < "2.13" should also be able to use # gcc -mdll instead of dllwrap # Older dllwraps had own version numbers, newer ones use the # same as the rest of binutils ( also ld ) # dllwrap 2.10.90 is buggy if self.ld_version >= "2.10.90": self.linker_dll = "gcc" else: self.linker_dll = "dllwrap" # ld_version >= "2.13" support -shared so use it instead of # -mdll -static if self.ld_version >= "2.13": shared_option = "-shared" else: shared_option = "-mdll -static" # FIXME: # Hard-code may override unix-compiler settings and isn't # possible to use Makefile variables to pass correct flags ! # Hard-code GCC because that's what this is all about. # XXX optimization, warnings etc. should be customizable. self.set_executables(compiler='gcc -mcygwin -O -Wall', compiler_so='gcc -mcygwin -mdll -O -Wall', compiler_cxx='g++ -mcygwin -O -Wall', linker_exe='gcc -mcygwin', linker_so=('%s -mcygwin %s' % (self.linker_dll, shared_option))) # cygwin and mingw32 need different sets of libraries if self.gcc_version == "2.91.57": # cygwin shouldn't need msvcrt, but without the dlls will crash # (gcc version 2.91.57) -- perhaps something about initialization self.dll_libraries=["msvcrt"] self.warn( "Consider upgrading to a newer version of gcc") else: # Include the appropriate MSVC runtime library if Python was built # with MSVC 7.0 or later. self.dll_libraries = get_msvcr() # __init__ () def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts): if ext == '.rc' or ext == '.res': # gcc needs '.res' and '.rc' compiled to object files !!! try: self.spawn(["windres", "-i", src, "-o", obj]) except DistutilsExecError, msg: raise CompileError, msg else: # for other files use the C-compiler try: self.spawn(self.compiler_so + cc_args + [src, '-o', obj] + extra_postargs) except DistutilsExecError, msg: raise CompileError, msg def link (self, target_desc, objects, output_filename, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None): # use separate copies, so we can modify the lists extra_preargs = copy.copy(extra_preargs or []) libraries = copy.copy(libraries or []) objects = copy.copy(objects or []) # Additional libraries libraries.extend(self.dll_libraries) # handle export symbols by creating a def-file # with executables this only works with gcc/ld as linker if ((export_symbols is not None) and (target_desc != self.EXECUTABLE or self.linker_dll == "gcc")): # (The linker doesn't do anything if output is up-to-date. # So it would probably better to check if we really need this, # but for this we had to insert some unchanged parts of # UnixCCompiler, and this is not what we want.) # we want to put some files in the same directory as the # object files are, build_temp doesn't help much # where are the object files temp_dir = os.path.dirname(objects[0]) # name of dll to give the helper files the same base name (dll_name, dll_extension) = os.path.splitext( os.path.basename(output_filename)) # generate the filenames for these files def_file = os.path.join(temp_dir, dll_name + ".def") lib_file = os.path.join(temp_dir, 'lib' + dll_name + ".a") # Generate .def file contents = [ "LIBRARY %s" % os.path.basename(output_filename), "EXPORTS"] for sym in export_symbols: contents.append(sym) self.execute(write_file, (def_file, contents), "writing %s" % def_file) # next add options for def-file and to creating import libraries # dllwrap uses different options than gcc/ld if self.linker_dll == "dllwrap": extra_preargs.extend(["--output-lib", lib_file]) # for dllwrap we have to use a special option extra_preargs.extend(["--def", def_file]) # we use gcc/ld here and can be sure ld is >= 2.9.10 else: # doesn't work: bfd_close build\...\libfoo.a: Invalid operation #extra_preargs.extend(["-Wl,--out-implib,%s" % lib_file]) # for gcc/ld the def-file is specified as any object files objects.append(def_file) #end: if ((export_symbols is not None) and # (target_desc != self.EXECUTABLE or self.linker_dll == "gcc")): # who wants symbols and a many times larger output file # should explicitly switch the debug mode on # otherwise we let dllwrap/ld strip the output file # (On my machine: 10KB < stripped_file < ??100KB # unstripped_file = stripped_file + XXX KB # ( XXX=254 for a typical python extension)) if not debug: extra_preargs.append("-s") UnixCCompiler.link(self, target_desc, objects, output_filename, output_dir, libraries, library_dirs, runtime_library_dirs, None, # export_symbols, we do this in our def-file debug, extra_preargs, extra_postargs, build_temp, target_lang) # link () # -- Miscellaneous methods ----------------------------------------- # overwrite the one from CCompiler to support rc and res-files def object_filenames (self, source_filenames, strip_dir=0, output_dir=''): if output_dir is None: output_dir = '' obj_names = [] for src_name in source_filenames: # FIXME: "bogus checks for suffix" - as example the commented # by #BOGUS# code break valid assembler suffix ".S" ! #BOGUS## use normcase to make sure '.rc' is really '.rc' and not '.RC' #BOGUS#base, ext = os.path.splitext(os.path.normcase(src_name)) base, ext = os.path.splitext (src_name) ext_normcase = os.path.normcase(ext) if ext_normcase in ['.rc','.res']: ext = ext_normcase if ext not in (self.src_extensions + ['.rc','.res']): raise UnknownFileError, \ "unknown file type '%s' (from '%s')" % \ (ext, src_name) base = os.path.splitdrive(base)[1] # Chop off the drive base = base[os.path.isabs(base):] # If abs, chop off leading / if strip_dir: base = os.path.basename (base) if ext == '.res' or ext == '.rc': # these need to be compiled to object files obj_names.append (os.path.join (output_dir, base + ext + self.obj_extension)) else: obj_names.append (os.path.join (output_dir, base + self.obj_extension)) return obj_names # object_filenames () # class CygwinCCompiler # the same as cygwin plus some additional parameters class Mingw32CCompiler (CygwinCCompiler): compiler_type = 'mingw32' def __init__ (self, verbose=0, dry_run=0, force=0): CygwinCCompiler.__init__ (self, verbose, dry_run, force) # ld_version >= "2.13" support -shared so use it instead of # -mdll -static if self.ld_version >= "2.13": shared_option = "-shared" else: shared_option = "-mdll -static" # A real mingw32 doesn't need to specify a different entry point, # but cygwin 2.91.57 in no-cygwin-mode needs it. if self.gcc_version <= "2.91.57": entry_point = '--entry _DllMain@12' else: entry_point = '' self.set_executables(compiler='gcc -mno-cygwin -O -Wall', compiler_so='gcc -mno-cygwin -mdll -O -Wall', compiler_cxx='g++ -mno-cygwin -O -Wall', linker_exe='gcc -mno-cygwin', linker_so='%s -mno-cygwin %s %s' % (self.linker_dll, shared_option, entry_point)) # Maybe we should also append -mthreads, but then the finished # dlls need another dll (mingwm10.dll see Mingw32 docs) # (-mthreads: Support thread-safe exception handling on `Mingw32') # no additional libraries needed self.dll_libraries=[] # Include the appropriate MSVC runtime library if Python was built # with MSVC 7.0 or later. self.dll_libraries = get_msvcr() # __init__ () # class Mingw32CCompiler # Because these compilers aren't configured in Python's pyconfig.h file by # default, we should at least warn the user if he is using a unmodified # version. CONFIG_H_OK = "ok" CONFIG_H_NOTOK = "not ok" CONFIG_H_UNCERTAIN = "uncertain" def check_config_h(): """Check if the current Python installation (specifically, pyconfig.h) appears amenable to building extensions with GCC. Returns a tuple (status, details), where 'status' is one of the following constants: CONFIG_H_OK all is well, go ahead and compile CONFIG_H_NOTOK doesn't look good CONFIG_H_UNCERTAIN not sure -- unable to read pyconfig.h 'details' is a human-readable string explaining the situation. Note there are two ways to conclude "OK": either 'sys.version' contains the string "GCC" (implying that this Python was built with GCC), or the installed "pyconfig.h" contains the string "__GNUC__". """ # XXX since this function also checks sys.version, it's not strictly a # "pyconfig.h" check -- should probably be renamed... from distutils import sysconfig import string # if sys.version contains GCC then python was compiled with # GCC, and the pyconfig.h file should be OK if string.find(sys.version,"GCC") >= 0: return (CONFIG_H_OK, "sys.version mentions 'GCC'") fn = sysconfig.get_config_h_filename() try: # It would probably better to read single lines to search. # But we do this only once, and it is fast enough f = open(fn) try: s = f.read() finally: f.close() except IOError, exc: # if we can't read this file, we cannot say it is wrong # the compiler will complain later about this file as missing return (CONFIG_H_UNCERTAIN, "couldn't read '%s': %s" % (fn, exc.strerror)) else: # "pyconfig.h" contains an "#ifdef __GNUC__" or something similar if string.find(s,"__GNUC__") >= 0: return (CONFIG_H_OK, "'%s' mentions '__GNUC__'" % fn) else: return (CONFIG_H_NOTOK, "'%s' does not mention '__GNUC__'" % fn) def get_versions(): """ Try to find out the versions of gcc, ld and dllwrap. If not possible it returns None for it. """ from distutils.version import LooseVersion from distutils.spawn import find_executable import re gcc_exe = os.environ.get('CC') or find_executable('gcc') ld_exe = os.environ.get('LD') or find_executable('ld') if gcc_exe: out = os.popen(gcc_exe + ' -dumpversion','r') out_string = out.read() out.close() result = re.search('(\d+\.\d+(\.\d+)*)',out_string) if result: gcc_version = LooseVersion(result.group(1)) else: gcc_version = None out = os.popen(gcc_exe + ' --print-prog-name ld','r') ld_exe = out.read().decode('ascii').split()[0] out.close() else: gcc_version = None if ld_exe: out = os.popen(ld_exe + ' -v','r') out_string = out.read() out.close() result = re.search('(\d+\.\d+(\.\d+)*)',out_string) if result: ld_version = LooseVersion(result.group(1)) else: ld_version = None else: ld_version = None dllwrap_exe = os.environ.get('DLLWRAP') or find_executable('dllwrap') if dllwrap_exe: out = os.popen(dllwrap_exe + ' --version','r') out_string = out.read() out.close() result = re.search(' (\d+\.\d+(\.\d+)*)',out_string) if result: dllwrap_version = LooseVersion(result.group(1)) else: dllwrap_version = None else: dllwrap_version = None return (gcc_version, ld_version, dllwrap_version)