// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include class ClampMicrokernelTester { public: enum class Variant { Native, Scalar, }; inline ClampMicrokernelTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline ClampMicrokernelTester& inplace(bool inplace) { this->inplace_ = inplace; return *this; } inline bool inplace() const { return this->inplace_; } inline ClampMicrokernelTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline ClampMicrokernelTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline ClampMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_u8_clamp_ukernel_function clamp, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint8_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(u8rng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(u8rng)); } else { std::fill(y.begin(), y.end(), 0xA5); } const uint8_t* x_data = inplace() ? y.data() : x.data(); // Prepare parameters. union xnn_u8_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_u8_minmax_params(qmin(), qmax()); break; case Variant::Scalar: params = xnn_init_scalar_u8_minmax_params(qmin(), qmax()); break; } // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(x_data[i], qmax()), qmin()); } // Call optimized micro-kernel. clamp(batch_size() * sizeof(uint8_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_LE(uint32_t(y[i]), uint32_t(qmax())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_GE(uint32_t(y[i]), uint32_t(qmin())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i])) << "at position " << i << ", batch_size = " << batch_size() << ", qmin = " << uint32_t(qmin()) << ", qmax = " << uint32_t(qmax()); } } } void Test(xnn_f16_clamp_ukernel_function clamp) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 255.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f16rng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f16rng)); } else { std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); } const uint16_t* x_data = inplace() ? y.data() : x.data(); // Prepare parameters. xnn_f16_minmax_params params = xnn_init_f16_minmax_params( fp16_ieee_from_fp32_value(float(qmin())), fp16_ieee_from_fp32_value(float(qmax()))); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(fp16_ieee_to_fp32_value(x_data[i]), float(qmax())), float(qmin())); } // Call optimized micro-kernel. clamp(batch_size() * sizeof(uint16_t), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_LE(fp16_ieee_to_fp32_value(y[i]), float(qmax())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_GE(fp16_ieee_to_fp32_value(y[i]), float(qmin())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_EQ(y_ref[i], fp16_ieee_to_fp32_value(y[i])) << "at position " << i << ", batch_size = " << batch_size() << ", qmin = " << float(qmin()) << ", qmax = " << float(qmax()); } } } void Test(xnn_f32_clamp_ukernel_function clamp, Variant variant = Variant::Native) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 255.0f), rng); std::vector x(batch_size() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(batch_size() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0)); std::vector y_ref(batch_size()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32rng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32rng)); } else { std::fill(y.begin(), y.end(), std::nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Prepare parameters. xnn_f32_minmax_params params = { }; switch (variant) { case Variant::Native: params = xnn_init_f32_minmax_params(float(qmin()), float(qmax())); break; case Variant::Scalar: params = xnn_init_scalar_f32_minmax_params(float(qmin()), float(qmax())); break; } // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { y_ref[i] = std::max(std::min(x_data[i], float(qmax())), float(qmin())); } // Call optimized micro-kernel. clamp(batch_size() * sizeof(float), x_data, y.data(), ¶ms); // Verify results. for (size_t i = 0; i < batch_size(); i++) { ASSERT_LE(y[i], float(qmax())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_GE(y[i], float(qmin())) << "at position " << i << ", batch_size = " << batch_size(); ASSERT_EQ(y_ref[i], y[i]) << "at position " << i << ", batch_size = " << batch_size() << ", qmin = " << uint32_t(qmin()) << ", qmax = " << uint32_t(qmax()); } } } private: size_t batch_size_{1}; bool inplace_{false}; uint8_t qmin_{50}; uint8_t qmax_{200}; size_t iterations_{15}; };