// Copyright 2018 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// kernel_msa.h: a collection of MSA optimized kernels.
// Check in kernel_default.h which one(s) are actually used by default.
// Others are mere experiments; they are still covered by tests
// in case they might be useful some day.

#ifndef GEMMLOWP_INTERNAL_KERNEL_MSA_H_
#define GEMMLOWP_INTERNAL_KERNEL_MSA_H_

#include "kernel.h"

#include <msa.h>
#include <cassert>

namespace gemmlowp {

#ifdef GEMMLOWP_MSA

// Some convenience macros to hide differences between MIPS32 and MIPS64.
#ifdef GEMMLOWP_MIPS_64
#define GEMMLOWP_MIPS_XADDU "daddu"
#define GEMMLOWP_MIPS_XADDIU "daddiu"
#define GEMMLOWP_MIPS_XSLL "dsll"
#else
#define GEMMLOWP_MIPS_XADDU "addu"
#define GEMMLOWP_MIPS_XADDIU "addiu"
#define GEMMLOWP_MIPS_XSLL "sll"
#endif

// Our main GEMM kernel.
struct MSA_Kernel12x8Depth2 : KernelBase {
  typedef KernelFormat<KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 3>,
                       KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, 2> >
      Format;

  const char* Name() const override { return "MSA, 12x8, depth 2"; }

  // TODO(benoitjacob): reorder function arguments so dst comes last
  void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
           std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
           const std::uint8_t* rhs_ptr, std::size_t start_depth,
           std::size_t run_depth) const override {
    ScopedProfilingLabel label("optimized kernel (MSA 12x8)");
// See comments above for why we need local numerical labels in our asm.
#define GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "1"
#define GEMMLOWP_LABEL_BEFORE_LOOP "2"
#define GEMMLOWP_LABEL_LOOP "3"
#define GEMMLOWP_LABEL_AFTER_LOOP "4"

    assert(dst_row_stride == 1);
    asm volatile(
        // Multiply dst_col_stride by 4 == sizeof(int32) to use
        // it as a byte offset below.
        GEMMLOWP_MIPS_XSLL
        " %[dst_col_stride], %[dst_col_stride], 2\n"

        // Check if start_depth==0 to decide whether we will clear
        // accumulators or load existing accumulators.
        "beqz   %[start_depth], " GEMMLOWP_LABEL_CLEAR_ACCUMULATORS "f\n"

        // Load accumulators (start_depth != 0).
        GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n"
        "ld.w   $w0,  (0*16)(%[dst_ptr])\n"
        "ld.w   $w4,  (1*16)(%[dst_ptr])\n"
        "ld.w   $w8,  (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "ld.w   $w1,  (0*16)($a0)\n"
        "ld.w   $w5,  (1*16)($a0)\n"
        "ld.w   $w9,  (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "ld.w   $w2,  (0*16)($a1)\n"
        "ld.w   $w6,  (1*16)($a1)\n"
        "ld.w   $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "ld.w   $w3,  (0*16)($a0)\n"
        "ld.w   $w7,  (1*16)($a0)\n"
        "ld.w   $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "ld.w   $w12, (0*16)($a1)\n"
        "ld.w   $w16, (1*16)($a1)\n"
        "ld.w   $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "ld.w   $w13, (0*16)($a0)\n"
        "ld.w   $w17, (1*16)($a0)\n"
        "ld.w   $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "ld.w   $w14, (0*16)($a1)\n"
        "ld.w   $w18, (1*16)($a1)\n"
        "ld.w   $w22, (2*16)($a1)\n"
        "ld.w   $w15, (0*16)($a0)\n"
        "ld.w   $w19, (1*16)($a0)\n"
        "ld.w   $w23, (2*16)($a0)\n"
        "b " GEMMLOWP_LABEL_BEFORE_LOOP "f\n"

        GEMMLOWP_LABEL_CLEAR_ACCUMULATORS ":\n"
        // Clear accumulators (start_depth == 0).
        "ldi.w  $w0,  0\n"
        "ldi.w  $w4,  0\n"
        "ldi.w  $w8,  0\n"
        "ldi.w  $w1,  0\n"
        "ldi.w  $w5,  0\n"
        "ldi.w  $w9,  0\n"
        "ldi.w  $w2,  0\n"
        "ldi.w  $w6,  0\n"
        "ldi.w  $w10, 0\n"
        "ldi.w  $w3,  0\n"
        "ldi.w  $w7,  0\n"
        "ldi.w  $w11, 0\n"
        "ldi.w  $w12, 0\n"
        "ldi.w  $w16, 0\n"
        "ldi.w  $w20, 0\n"
        "ldi.w  $w13, 0\n"
        "ldi.w  $w17, 0\n"
        "ldi.w  $w21, 0\n"
        "ldi.w  $w14, 0\n"
        "ldi.w  $w18, 0\n"
        "ldi.w  $w22, 0\n"
        "ldi.w  $w15, 0\n"
        "ldi.w  $w19, 0\n"
        "ldi.w  $w23, 0\n"

        GEMMLOWP_LABEL_BEFORE_LOOP ":\n"

        GEMMLOWP_LABEL_LOOP ":\n"
        // Overview of register layout:
        //
        // A half of the 2 2x4 cells of Rhs is stored in 16bit in w28-w31
        // (each register contains 4 replicas of a pair of elements).
        // A 12x2 block of 3 4x2 cells Lhs is stored in 16bit in w24-w26.
        // A 12x8 block of accumulators is stored in 32bit in w0-w23.
        //
        //                    +------+------+------+------+
        //               Rhs  |w28   |w29   |w30   |w31   |
        //                    +------+------+------+------+
        //
        //                    |      |      |      |      |
        //
        //       Lhs          |      |      |      |      |
        //
        //      +---+ - - - - +------+------+------+------+
        //      |w24|         |w0/12 |w1/13 |w2/14 |w3/15 |
        //      |w24|         |w0/12 |w1/13 |w2/14 |w3/15 |
        //      |w24|         |w0/12 |w1/13 |w2/14 |w3/15 |
        //      |w24|         |w0/12 |w1/13 |w2/14 |w3/15 |
        //      +---+ - - - - +------+------+------+------+
        //      |w25|         |w4/16 |w5/17 |w6/18 |w7/19 |
        //      |w25|         |w4/16 |w5/17 |w6/18 |w7/19 |
        //      |w25|         |w4/16 |w5/17 |w6/18 |w7/19 |
        //      |w25|         |w4/16 |w5/17 |w6/18 |w7/19 |
        //      +---+ - - - - +------+------+------+------+
        //      |w26|         |w8/20 |w9/21 |w10/22|w11/23|
        //      |w26|         |w8/20 |w9/21 |w10/22|w11/23|
        //      |w26|         |w8/20 |w9/21 |w10/22|w11/23|
        //      |w26|         |w8/20 |w9/21 |w10/22|w11/23|
        //      +---+ - - - - +------+------+------+------+
        //
        //                             Accumulators

        // Load 3 x 8 bytes of lhs[] with 2 16-byte overlapped loads.
        "ld.b   $w24, 0(%[lhs_ptr])\n"
        "ld.b   $w25, 8(%[lhs_ptr])\n"

        // Load 2 x 8 bytes of rhs[].
        "ld.b   $w27, 0(%[rhs_ptr])\n"

        // Zero-extend 8-bit elements of lhs[] to 16 bits.
        "ldi.b  $w31, 0\n"
        "ilvr.b $w24, $w31, $w24\n"
        "ilvl.b $w26, $w31, $w25\n"
        "ilvr.b $w25, $w31, $w25\n"

        // First half of depths 0 and 1.
        // Zero-extend 8-bit elements of rhs[] to 16 bits.
        "ilvr.b    $w31, $w31, $w27\n"
        // Make 4 replicas of every pair of rhs[] elements.
        "splati.w  $w28, $w31[0]\n"
        "splati.w  $w29, $w31[1]\n"
        "splati.w  $w30, $w31[2]\n"
        "splati.w  $w31, $w31[3]\n"
        // Dot-product-(and)-add doubles multiplicand width.
        "dpadd_u.w  $w0, $w24, $w28\n"
        "dpadd_u.w  $w4, $w25, $w28\n"
        "dpadd_u.w  $w8, $w26, $w28\n"
        "dpadd_u.w  $w1, $w24, $w29\n"
        "dpadd_u.w  $w5, $w25, $w29\n"
        "dpadd_u.w  $w9, $w26, $w29\n"
        "dpadd_u.w  $w2, $w24, $w30\n"
        "dpadd_u.w  $w6, $w25, $w30\n"
        "dpadd_u.w $w10, $w26, $w30\n"
        "dpadd_u.w  $w3, $w24, $w31\n"
        "dpadd_u.w  $w7, $w25, $w31\n"
        "dpadd_u.w $w11, $w26, $w31\n"

        // Second half of depths 0 and 1.
        // Zero-extend 8-bit elements of rhs[] to 16 bits.
        "ldi.b     $w31, 0\n"
        "ilvl.b    $w31, $w31, $w27\n"
        // Make 4 replicas of every pair of rhs[] elements.
        "splati.w  $w28, $w31[0]\n"
        "splati.w  $w29, $w31[1]\n"
        "splati.w  $w30, $w31[2]\n"
        "splati.w  $w31, $w31[3]\n"
        // Dot-product-(and)-add doubles multiplicand width.
        "dpadd_u.w $w12, $w24, $w28\n"
        "dpadd_u.w $w16, $w25, $w28\n"
        "dpadd_u.w $w20, $w26, $w28\n"
        "dpadd_u.w $w13, $w24, $w29\n"
        "dpadd_u.w $w17, $w25, $w29\n"
        "dpadd_u.w $w21, $w26, $w29\n"
        "dpadd_u.w $w14, $w24, $w30\n"
        "dpadd_u.w $w18, $w25, $w30\n"
        "dpadd_u.w $w22, $w26, $w30\n"
        "dpadd_u.w $w15, $w24, $w31\n"
        "dpadd_u.w $w19, $w25, $w31\n"
        "dpadd_u.w $w23, $w26, $w31\n"

        GEMMLOWP_MIPS_XADDIU " %[run_depth], -2\n" GEMMLOWP_MIPS_XADDIU
        " %[lhs_ptr], 24\n" GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 16\n"
        "bnez   %[run_depth]," GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP ":\n"

        // Store accumulators.
        GEMMLOWP_MIPS_XADDU " $a0, %[dst_ptr], %[dst_col_stride]\n"
        "st.w   $w0,  (0*16)(%[dst_ptr])\n"
        "st.w   $w4,  (1*16)(%[dst_ptr])\n"
        "st.w   $w8,  (2*16)(%[dst_ptr])\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "st.w   $w1,  (0*16)($a0)\n"
        "st.w   $w5,  (1*16)($a0)\n"
        "st.w   $w9,  (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "st.w   $w2,  (0*16)($a1)\n"
        "st.w   $w6,  (1*16)($a1)\n"
        "st.w   $w10, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "st.w   $w3,  (0*16)($a0)\n"
        "st.w   $w7,  (1*16)($a0)\n"
        "st.w   $w11, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "st.w   $w12, (0*16)($a1)\n"
        "st.w   $w16, (1*16)($a1)\n"
        "st.w   $w20, (2*16)($a1)\n" GEMMLOWP_MIPS_XADDU " $a1, $a0, %[dst_col_stride]\n"
        "st.w   $w13, (0*16)($a0)\n"
        "st.w   $w17, (1*16)($a0)\n"
        "st.w   $w21, (2*16)($a0)\n" GEMMLOWP_MIPS_XADDU " $a0, $a1, %[dst_col_stride]\n"
        "st.w   $w14, (0*16)($a1)\n"
        "st.w   $w18, (1*16)($a1)\n"
        "st.w   $w22, (2*16)($a1)\n"
        "st.w   $w15, (0*16)($a0)\n"
        "st.w   $w19, (1*16)($a0)\n"
        "st.w   $w23, (2*16)($a0)\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr), [run_depth] "+r"(run_depth),
        [dst_col_stride] "+r"(dst_col_stride)
        :  // inputs
        [dst_ptr] "r"(dst_ptr),
        [start_depth] "r"(start_depth)
        :  // clobbers
        "memory", "a0", "a1", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9",
        "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20",
        "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31");

#undef GEMMLOWP_LABEL_CLEAR_ACCUMULATORS
#undef GEMMLOWP_LABEL_BEFORE_LOOP
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP
  }
};

// Fast kernel operating on int8 operands.
// It is assumed that one of the two int8 operands only takes values
// in [-127, 127], while the other may freely range in [-128, 127].
// The issue with both operands taking the value -128 is that:
// -128*-128 + -128*-128 == -32768 overflows int16.
// Every other expression a*b + c*d, for any int8 a,b,c,d, fits in int16
// range. That is the basic idea of this kernel.
struct MSA_GEMM_Int8Operands_LhsNonzero : KernelBase {
  typedef KernelFormat<
      KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1>,
      KernelSideFormatInt8<CellFormat<4, 16, CellOrder::WidthMajor>, 1> >
      Format;

  const char* Name() const override {
    return "MSA, 4x4, depth 16, accumulating two within signed int16";
  }

  // TODO(benoitjacob): reorder function arguments so dst comes last
  void Run(std::int32_t* dst_ptr, std::size_t dst_row_stride,
           std::size_t dst_col_stride, const std::uint8_t* lhs_ptr,
           const std::uint8_t* rhs_ptr, std::size_t start_depth,
           std::size_t run_depth) const override {
    (void)dst_row_stride;
#define GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "1"
#define GEMMLOWP_LABEL_LOOP "2"
#define GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "3"
#define GEMMLOWP_LABEL_STORE "4"
    asm volatile(
        GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n"
        // Load lhs[] and rhs[], zero out internal accumulators.
        "ld.b       $w16, 0(%[lhs_ptr])\n"
        "ldi.b      $w0, 0\n"
        "ld.b       $w20, 0(%[rhs_ptr])\n"
        "ldi.b      $w1, 0\n"
        "ld.b       $w17, 16(%[lhs_ptr])\n"
        "ldi.b      $w2, 0\n"
        "ld.b       $w21, 16(%[rhs_ptr])\n"
        "ldi.b      $w3, 0\n"
        "ld.b       $w18, 32(%[lhs_ptr])\n"
        "ldi.b      $w4, 0\n"
        "ld.b       $w19, 48(%[lhs_ptr])\n"
        "ldi.b      $w5, 0\n"
        "ld.b       $w22, 32(%[rhs_ptr])\n"
        "ldi.b      $w6, 0\n"
        "ld.b       $w23, 48(%[rhs_ptr])\n"
        "ldi.b      $w7, 0\n"
        "ldi.b      $w8, 0\n"
        "ldi.b      $w9, 0\n"
        "ldi.b      $w10, 0\n"
        "ldi.b      $w11, 0\n"
        "ldi.b      $w12, 0\n"
        "ldi.b      $w13, 0\n"
        "ldi.b      $w14, 0\n"
        "ldi.b      $w15, 0\n"
        "ldi.h      $w31, 1\n"
        // If the loop depth is only 16, then we can skip the general loop
        // and go straight to the final part of the code.
        "beqz %[run_depth], " GEMMLOWP_LABEL_AFTER_LOOP_LAST16 "f\n"

        GEMMLOWP_LABEL_LOOP ":\n"
        // Overview of register layout:
        //
        // A 4x16 block of Rhs is stored in 8 bit in w16-w19.
        // A 4x16 block of Lhs is stored in 8 bit in w20-w23.
        //
        // A 4x4 block of accumulators is stored in w0-w15 (as 4x32 bit
        // components which need to be horizontally added at the end).
        //
        // Dot products of Lhs and Rhs are 16-bit values, which can't
        // immediately be accumulated in 32-bit accumulators by that
        // same instruction that calculates them.
        // For example, "dotp_s.h $w25, $w16, $w20" produces 8 16-bit
        // sums in w25 (note, the 16 sums have already been reduced to 8
        // by the horizontal addition of the dotp instruction).
        // They are then sign-extended to 32 bits, horizontally added
        // (again) to form 4 32-bit sums and then they are finally added
        // to the 32-bit accumulators, all by "dpadd_s.w $w0, $w25, $w31".
        //
        //                    +-----+-----+-----+-----+
        //               Rhs  | w20 | w21 | w22 | w23 |
        //                    +-----+-----+-----+-----+
        //
        //                    |     |     |     |     |
        //
        //       Lhs          |     |     |     |     |
        //
        //      +---+ - - - - +-----+-----+-----+-----+
        //      |w16|         | w0  | w4  | w8  | w12 |
        //      |w17|         | w1  | w5  | w9  | w13 |
        //      |w18|         | w2  | w6  | w10 | w14 |
        //      |w19|         | w3  | w7  | w11 | w15 |
        //      +---+ - - - - +-----+-----+-----+-----+
        //
        //                           Accumulators

        // Calculate the results for 16 depths and load
        // lhs[] and rhs[] for the next iteration.
        GEMMLOWP_MIPS_XADDIU " %[lhs_ptr], 64\n"
        GEMMLOWP_MIPS_XADDIU " %[rhs_ptr], 64\n"
        GEMMLOWP_MIPS_XADDIU " %[run_depth], -16\n"

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w25, $w16, $w20\n"
        "dotp_s.h   $w26, $w17, $w20\n"
        "dotp_s.h   $w27, $w16, $w21\n"
        "dotp_s.h   $w28, $w17, $w21\n"
        "dotp_s.h   $w29, $w18, $w20\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w0, $w25, $w31\n"
        "dpadd_s.w  $w1, $w26, $w31\n"
        "dpadd_s.w  $w4, $w27, $w31\n"
        "dpadd_s.w  $w5, $w28, $w31\n"
        "dpadd_s.w  $w2, $w29, $w31\n"

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w24, $w16, $w22\n"
        "dotp_s.h   $w25, $w19, $w20\n"
        "dotp_s.h   $w26, $w16, $w23\n"
        "dotp_s.h   $w27, $w17, $w22\n"
        "ld.b       $w20, 0(%[rhs_ptr])\n"
        "dotp_s.h   $w28, $w17, $w23\n"
        "ld.b       $w16, 0(%[lhs_ptr])\n"
        "dotp_s.h   $w29, $w18, $w21\n"
        "ld.b       $w17, 16(%[lhs_ptr])\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w8, $w24, $w31\n"
        "dpadd_s.w  $w3, $w25, $w31\n"
        "dpadd_s.w  $w12, $w26, $w31\n"
        "dpadd_s.w  $w9, $w27, $w31\n"
        "dpadd_s.w  $w13, $w28, $w31\n"
        "dpadd_s.w  $w6, $w29, $w31\n"

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w25, $w19, $w21\n"
        "dotp_s.h   $w26, $w18, $w22\n"
        "dotp_s.h   $w27, $w18, $w23\n"
        "ld.b       $w21, 16(%[rhs_ptr])\n"
        "dotp_s.h   $w28, $w19, $w22\n"
        "ld.b       $w18, 32(%[lhs_ptr])\n"
        "dotp_s.h   $w29, $w19, $w23\n"
        "ld.b       $w22, 32(%[rhs_ptr])\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w7, $w25, $w31\n"
        "ld.b       $w19, 48(%[lhs_ptr])\n"
        "dpadd_s.w  $w10, $w26, $w31\n"
        "ld.b       $w23, 48(%[rhs_ptr])\n"
        "dpadd_s.w  $w14, $w27, $w31\n"
        "dpadd_s.w  $w11, $w28, $w31\n"
        "dpadd_s.w  $w15, $w29, $w31\n"

        "bnez %[run_depth], " GEMMLOWP_LABEL_LOOP "b\n"

        GEMMLOWP_LABEL_AFTER_LOOP_LAST16 ":\n"
        // Calculate the results for the last 16 depths.

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w25, $w16, $w20\n"
        "dotp_s.h   $w26, $w17, $w20\n"
        "dotp_s.h   $w27, $w16, $w21\n"
        "dotp_s.h   $w28, $w17, $w21\n"
        "dotp_s.h   $w29, $w18, $w20\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w0, $w25, $w31\n"
        "dpadd_s.w  $w1, $w26, $w31\n"
        "dpadd_s.w  $w4, $w27, $w31\n"
        "dpadd_s.w  $w5, $w28, $w31\n"
        "dpadd_s.w  $w2, $w29, $w31\n"

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w24, $w16, $w22\n"
        "dotp_s.h   $w25, $w19, $w20\n"
        "dotp_s.h   $w26, $w16, $w23\n"
        "dotp_s.h   $w27, $w17, $w22\n"
        "dotp_s.h   $w28, $w17, $w23\n"
        "dotp_s.h   $w29, $w18, $w21\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w8, $w24, $w31\n"
        "dpadd_s.w  $w3, $w25, $w31\n"
        "dpadd_s.w  $w12, $w26, $w31\n"
        "dpadd_s.w  $w9, $w27, $w31\n"
        "dpadd_s.w  $w13, $w28, $w31\n"
        "dpadd_s.w  $w6, $w29, $w31\n"

        // Dot product: multiply-add pairs of adjacent int8 elements.
        // Each dot product takes 16*2 int8 values in and produces 8 int16 sums.
        "dotp_s.h   $w25, $w19, $w21\n"
        "dotp_s.h   $w26, $w18, $w22\n"
        "dotp_s.h   $w27, $w18, $w23\n"
        "dotp_s.h   $w28, $w19, $w22\n"
        "dotp_s.h   $w29, $w19, $w23\n"
        // Horizontal add of pairs of adjacent int16 sums into internal int32
        // accumulators.
        "dpadd_s.w  $w7, $w25, $w31\n"
        "dpadd_s.w  $w10, $w26, $w31\n"
        "dpadd_s.w  $w14, $w27, $w31\n"
        "dpadd_s.w  $w11, $w28, $w31\n"
        "dpadd_s.w  $w15, $w29, $w31\n"

        // Horizontal-add internal accumulators.
        "hadd_s.d   $w0, $w0, $w0\n"
        "hadd_s.d   $w1, $w1, $w1\n"
        "hadd_s.d   $w2, $w2, $w2\n"
        "hadd_s.d   $w3, $w3, $w3\n"
        "hadd_s.d   $w4, $w4, $w4\n"
        "hadd_s.d   $w5, $w5, $w5\n"
        "hadd_s.d   $w6, $w6, $w6\n"
        "hadd_s.d   $w7, $w7, $w7\n"
        "hadd_s.d   $w8, $w8, $w8\n"
        "hadd_s.d   $w9, $w9, $w9\n"
        "hadd_s.d   $w10, $w10, $w10\n"
        "hadd_s.d   $w11, $w11, $w11\n"
        "hadd_s.d   $w12, $w12, $w12\n"
        "hadd_s.d   $w13, $w13, $w13\n"
        "hadd_s.d   $w14, $w14, $w14\n"
        "hadd_s.d   $w15, $w15, $w15\n"
        "pckev.w    $w0, $w1, $w0\n"
        "pckev.w    $w2, $w3, $w2\n"
        "pckev.w    $w4, $w5, $w4\n"
        "pckev.w    $w6, $w7, $w6\n"
        "pckev.w    $w8, $w9, $w8\n"
        "pckev.w    $w10, $w11, $w10\n"
        "pckev.w    $w12, $w13, $w12\n"
        "pckev.w    $w14, $w15, $w14\n"
        "hadd_s.d   $w0, $w0, $w0\n"
        "hadd_s.d   $w2, $w2, $w2\n"
        "hadd_s.d   $w4, $w4, $w4\n"
        "hadd_s.d   $w6, $w6, $w6\n"
        "hadd_s.d   $w8, $w8, $w8\n"
        "hadd_s.d   $w10, $w10, $w10\n"
        "hadd_s.d   $w12, $w12, $w12\n"
        "hadd_s.d   $w14, $w14, $w14\n"
        // 4 more pckev instructions follow in both paths below.

        // Check if start_depth==0 to decide whether we will load
        // existing accumulators from memory.
        "bnez %[start_depth], " GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES "f\n"

        "pckev.w    $w0, $w2, $w0\n"
        "pckev.w    $w1, $w6, $w4\n"
        "pckev.w    $w2, $w10, $w8\n"
        "pckev.w    $w3, $w14, $w12\n"

        "b " GEMMLOWP_LABEL_STORE "f\n"

        GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES ":\n"
        // Load accumulators from memory.
        "ld.w       $w16, 0(%[dst_ptr0])\n"
        "pckev.w    $w0, $w2, $w0\n"
        "ld.w       $w17, 0(%[dst_ptr1])\n"
        "pckev.w    $w1, $w6, $w4\n"
        "ld.w       $w18, 0(%[dst_ptr2])\n"
        "pckev.w    $w2, $w10, $w8\n"
        "ld.w       $w19, 0(%[dst_ptr3])\n"
        "pckev.w    $w3, $w14, $w12\n"

        // Add them to internal accumulators.
        "addv.w     $w0, $w0, $w16\n"
        "addv.w     $w1, $w1, $w17\n"
        "addv.w     $w2, $w2, $w18\n"
        "addv.w     $w3, $w3, $w19\n"

        GEMMLOWP_LABEL_STORE ":\n"
        // Store accumulators.
        "st.w       $w0, 0(%[dst_ptr0])\n"
        "st.w       $w1, 0(%[dst_ptr1])\n"
        "st.w       $w2, 0(%[dst_ptr2])\n"
        "st.w       $w3, 0(%[dst_ptr3])\n"
        :  // outputs
        [lhs_ptr] "+r"(lhs_ptr), [rhs_ptr] "+r"(rhs_ptr),
        [run_depth] "+r"(run_depth)
        :  // inputs
        [dst_ptr0] "r"(dst_ptr), [dst_ptr1] "r"(dst_ptr + dst_col_stride),
        [dst_ptr2] "r"(dst_ptr + dst_col_stride * 2),
        [dst_ptr3] "r"(dst_ptr + dst_col_stride * 3),
        [start_depth] "r"(start_depth)
        :  // clobbers
        "memory", "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8",
        "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17",
        "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26",
        "$f27", "$f28", "$f29", "$f30", "$f31");
#undef GEMMLOWP_LABEL_LOOP
#undef GEMMLOWP_LABEL_AFTER_LOOP_LAST16
#undef GEMMLOWP_LABEL_ACCUMULATE_EXISTING_DST_VALUES
#undef GEMMLOWP_LABEL_STORE
  }
};

#undef GEMMLOWP_MIPS_XADDU
#undef GEMMLOWP_MIPS_XADDIU
#undef GEMMLOWP_MIPS_XSLL

#endif  // GEMMLOWP_MSA

}  // namespace gemmlowp

#endif  // GEMMLOWP_INTERNAL_KERNEL_MSA_H_