/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_BIT_VECTOR_H_ #define ART_LIBARTBASE_BASE_BIT_VECTOR_H_ #include #include #include "bit_utils.h" #include "globals.h" namespace art { class Allocator; class ArenaBitVector; /* * Expanding bitmap, used for tracking resources. Bits are numbered starting * from zero. All operations on a BitVector are unsynchronized. */ class BitVector { public: static constexpr uint32_t kWordBytes = sizeof(uint32_t); static constexpr uint32_t kWordBits = kWordBytes * 8; class IndexContainer; /** * @brief Convenient iterator across the indexes of the BitVector's set bits. * * @details IndexIterator is a Forward iterator (C++11: 24.2.5) from the lowest * to the highest index of the BitVector's set bits. Instances can be retrieved * only through BitVector::Indexes() which returns an IndexContainer wrapper * object with begin() and end() suitable for range-based loops: * for (uint32_t idx : bit_vector.Indexes()) { * // Use idx. * } */ class IndexIterator : public std::iterator { public: bool operator==(const IndexIterator& other) const; bool operator!=(const IndexIterator& other) const { return !(*this == other); } uint32_t operator*() const; IndexIterator& operator++(); IndexIterator operator++(int); // Helper function to check for end without comparing with bit_vector.Indexes().end(). bool Done() const { return bit_index_ == BitSize(); } private: struct begin_tag { }; struct end_tag { }; IndexIterator(const BitVector* bit_vector, begin_tag); IndexIterator(const BitVector* bit_vector, end_tag); uint32_t BitSize() const { return storage_size_ * kWordBits; } uint32_t FindIndex(uint32_t start_index) const; const uint32_t* const bit_storage_; const uint32_t storage_size_; // Size of vector in words. uint32_t bit_index_; // Current index (size in bits). friend class BitVector::IndexContainer; }; /** * @brief BitVector wrapper class for iteration across indexes of set bits. */ class IndexContainer { public: explicit IndexContainer(const BitVector* bit_vector) : bit_vector_(bit_vector) { } IndexIterator begin() const; IndexIterator end() const; private: const BitVector* const bit_vector_; }; // MoveConstructible but not MoveAssignable, CopyConstructible or CopyAssignable. BitVector(const BitVector& other) = delete; BitVector& operator=(const BitVector& other) = delete; BitVector(BitVector&& other) : storage_(other.storage_), storage_size_(other.storage_size_), allocator_(other.allocator_), expandable_(other.expandable_) { other.storage_ = nullptr; other.storage_size_ = 0u; } BitVector(uint32_t start_bits, bool expandable, Allocator* allocator); BitVector(bool expandable, Allocator* allocator, uint32_t storage_size, uint32_t* storage); BitVector(const BitVector& src, bool expandable, Allocator* allocator); virtual ~BitVector(); // The number of words necessary to encode bits. static constexpr uint32_t BitsToWords(uint32_t bits) { return RoundUp(bits, kWordBits) / kWordBits; } // Mark the specified bit as "set". void SetBit(uint32_t idx) { /* * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're * not using it badly or change resize mechanism. */ if (idx >= storage_size_ * kWordBits) { EnsureSize(idx); } storage_[WordIndex(idx)] |= BitMask(idx); } // Mark the specified bit as "unset". void ClearBit(uint32_t idx) { // If the index is over the size, we don't have to do anything, it is cleared. if (idx < storage_size_ * kWordBits) { // Otherwise, go ahead and clear it. storage_[WordIndex(idx)] &= ~BitMask(idx); } } // Determine whether or not the specified bit is set. bool IsBitSet(uint32_t idx) const { // If the index is over the size, whether it is expandable or not, this bit does not exist: // thus it is not set. return (idx < (storage_size_ * kWordBits)) && IsBitSet(storage_, idx); } // Mark all bits bit as "clear". void ClearAllBits(); // Mark specified number of bits as "set". Cannot set all bits like ClearAll since there might // be unused bits - setting those to one will confuse the iterator. void SetInitialBits(uint32_t num_bits); void Copy(const BitVector* src); // Intersect with another bit vector. void Intersect(const BitVector* src2); // Union with another bit vector. bool Union(const BitVector* src); // Set bits of union_with that are not in not_in. bool UnionIfNotIn(const BitVector* union_with, const BitVector* not_in); void Subtract(const BitVector* src); // Are we equal to another bit vector? Note: expandability attributes must also match. bool Equal(const BitVector* src) const; /** * @brief Are all the bits set the same? * @details expandability and size can differ as long as the same bits are set. */ bool SameBitsSet(const BitVector *src) const; bool IsSubsetOf(const BitVector *other) const; // Count the number of bits that are set. uint32_t NumSetBits() const; // Count the number of bits that are set in range [0, end). uint32_t NumSetBits(uint32_t end) const; IndexContainer Indexes() const { return IndexContainer(this); } uint32_t GetStorageSize() const { return storage_size_; } bool IsExpandable() const { return expandable_; } uint32_t GetRawStorageWord(size_t idx) const { return storage_[idx]; } uint32_t* GetRawStorage() { return storage_; } const uint32_t* GetRawStorage() const { return storage_; } size_t GetSizeOf() const { return storage_size_ * kWordBytes; } size_t GetBitSizeOf() const { return storage_size_ * kWordBits; } /** * @return the highest bit set, -1 if none are set */ int GetHighestBitSet() const; /** * @return true if there are any bits set, false otherwise. */ bool IsAnyBitSet() const { return GetHighestBitSet() != -1; } // Minimum number of bits required to store this vector, 0 if none are set. size_t GetNumberOfBits() const { return GetHighestBitSet() + 1; } // Is bit set in storage. (No range check.) static bool IsBitSet(const uint32_t* storage, uint32_t idx) { return (storage[WordIndex(idx)] & BitMask(idx)) != 0; } // Number of bits set in range [0, end) in storage. (No range check.) static uint32_t NumSetBits(const uint32_t* storage, uint32_t end); // Fill given memory region with the contents of the vector and zero padding. void CopyTo(void* dst, size_t len) const { DCHECK_LE(static_cast(GetHighestBitSet() + 1), len * kBitsPerByte); size_t vec_len = GetSizeOf(); if (vec_len < len) { void* dst_padding = reinterpret_cast(dst) + vec_len; memcpy(dst, storage_, vec_len); memset(dst_padding, 0, len - vec_len); } else { memcpy(dst, storage_, len); } } void Dump(std::ostream& os, const char* prefix) const; Allocator* GetAllocator() const; private: /** * @brief Dump the bitvector into buffer in a 00101..01 format. * @param buffer the ostringstream used to dump the bitvector into. */ void DumpHelper(const char* prefix, std::ostringstream& buffer) const; // Ensure there is space for a bit at idx. void EnsureSize(uint32_t idx); // The index of the word within storage. static constexpr uint32_t WordIndex(uint32_t idx) { return idx >> 5; } // A bit mask to extract the bit for the given index. static constexpr uint32_t BitMask(uint32_t idx) { return 1 << (idx & 0x1f); } uint32_t* storage_; // The storage for the bit vector. uint32_t storage_size_; // Current size, in 32-bit words. Allocator* const allocator_; // Allocator if expandable. const bool expandable_; // Should the bitmap expand if too small? }; // Helper for dealing with 2d bit-vector arrays packed into a single bit-vec class BaseBitVectorArray { public: BaseBitVectorArray(const BaseBitVectorArray& bv) = default; BaseBitVectorArray& operator=(const BaseBitVectorArray& other) = default; BaseBitVectorArray() : num_columns_(0), num_rows_(0) {} BaseBitVectorArray(size_t num_rows, size_t num_columns) : num_columns_(RoundUp(num_columns, BitVector::kWordBits)), num_rows_(num_rows) {} virtual ~BaseBitVectorArray() {} bool IsExpandable() const { return GetRawData().IsExpandable(); } // Let subclasses provide storage for various types. virtual const BitVector& GetRawData() const = 0; virtual BitVector& GetRawData() = 0; size_t NumRows() const { return num_rows_; } // NB This might be more than the requested size for alignment purposes. size_t NumColumns() const { return num_columns_; } void Clear() { GetRawData().ClearAllBits(); } // Ensure that we can set all bits in the given range. The actual number of // columns might be larger than requested for alignment purposes. void Resize(size_t rows, size_t cols, bool clear = true); void SetBit(size_t row, size_t col) { DCHECK_LT(col, num_columns_); DCHECK_LT(row, num_rows_); GetRawData().SetBit(row * num_columns_ + col); } void ClearBit(size_t row, size_t col) { DCHECK_LT(col, num_columns_); DCHECK_LT(row, num_rows_); GetRawData().ClearBit(row * num_columns_ + col); } bool IsBitSet(size_t row, size_t col) const { DCHECK_LT(col, num_columns_); DCHECK_LT(row, num_rows_); return GetRawData().IsBitSet(row * num_columns_ + col); } // Union the vector of 'other' into 'dest_row'. void UnionRows(size_t dest_row, size_t other); static size_t RequiredBitVectorSize(size_t rows, size_t cols) { return rows * RoundUp(cols, BitVector::kWordBits); } static size_t MaxRowsFor(const BitVector& bv, size_t cols) { return cols != 0 ? bv.GetBitSizeOf() / RoundUp(cols, BitVector::kWordBits) : 0; } private: size_t num_columns_; size_t num_rows_; }; // A BitVectorArray with a standard owned BitVector providing the backing // storage. This should be used when the BitVectorArray is the owner of the // whole BitVector and should use standard allocators for cleanup/allocation. // Contrast this with ArenaBitVectorArray which uses arena allocators. class BitVectorArray final : public BaseBitVectorArray { public: BitVectorArray(const BitVectorArray& bv) = delete; BitVectorArray& operator=(const BitVectorArray& other) = delete; explicit BitVectorArray(BitVector&& bv) : BaseBitVectorArray(), data_(std::move(bv)) {} explicit BitVectorArray(BitVector&& bv, size_t cols) : BaseBitVectorArray(BaseBitVectorArray::MaxRowsFor(bv, cols), cols), data_(std::move(bv)) {} explicit BitVectorArray(BitVector&& bv, size_t rows, size_t cols) : BaseBitVectorArray(rows, cols), data_(std::move(bv)) {} BitVectorArray(uint32_t start_rows, uint32_t start_cols, bool expandable, Allocator* allocator) : BaseBitVectorArray(start_rows, start_cols), data_(BaseBitVectorArray::RequiredBitVectorSize(start_rows, start_cols), expandable, allocator) {} BitVectorArray(const BaseBitVectorArray& src, bool expandable, Allocator* allocator) : BaseBitVectorArray(src.NumRows(), src.NumColumns()), data_(src.GetRawData(), expandable, allocator) {} ~BitVectorArray() override {} const BitVector& GetRawData() const override { return data_; } BitVector& GetRawData() override { return data_; } private: BitVector data_; }; // A bit vector array that uses an unowned BitVector reference as it's backing // data. class BitVectorArrayWrapper final : public BaseBitVectorArray { public: BitVectorArrayWrapper& operator=(BitVectorArrayWrapper& other) = default; BitVectorArrayWrapper(BitVectorArrayWrapper&) = default; explicit BitVectorArrayWrapper(BitVector* bv) : BaseBitVectorArray(), data_(bv) {} explicit BitVectorArrayWrapper(BitVector* bv, size_t cols) : BaseBitVectorArray(BaseBitVectorArray::MaxRowsFor(*bv, cols), cols), data_(bv) {} explicit BitVectorArrayWrapper(BitVector* bv, size_t rows, size_t cols) : BaseBitVectorArray(rows, cols), data_(bv) {} ~BitVectorArrayWrapper() override {} const BitVector& GetRawData() const override { return *data_; } BitVector& GetRawData() override { return *data_; } private: BitVector* data_; }; } // namespace art #endif // ART_LIBARTBASE_BASE_BIT_VECTOR_H_