/* * Copyright (C) 2015 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Config.h" #include "DebugData.h" #include "PointerData.h" #include "backtrace.h" #include "debug_log.h" #include "malloc_debug.h" #include "UnwindBacktrace.h" extern "C" char* __cxa_demangle(const char*, char*, size_t*, int*); std::atomic_uint8_t PointerData::backtrace_enabled_; std::atomic_bool PointerData::backtrace_dump_; std::mutex PointerData::pointer_mutex_; std::unordered_map PointerData::pointers_ GUARDED_BY( PointerData::pointer_mutex_); std::mutex PointerData::frame_mutex_; std::unordered_map PointerData::key_to_index_ GUARDED_BY( PointerData::frame_mutex_); std::unordered_map PointerData::frames_ GUARDED_BY(PointerData::frame_mutex_); std::unordered_map> PointerData::backtraces_info_ GUARDED_BY(PointerData::frame_mutex_); constexpr size_t kBacktraceEmptyIndex = 1; size_t PointerData::cur_hash_index_ GUARDED_BY(PointerData::frame_mutex_); std::mutex PointerData::free_pointer_mutex_; std::deque PointerData::free_pointers_ GUARDED_BY( PointerData::free_pointer_mutex_); // Buffer to use for comparison. static constexpr size_t kCompareBufferSize = 512 * 1024; static std::vector g_cmp_mem(0); static void ToggleBacktraceEnable(int, siginfo_t*, void*) { g_debug->pointer->ToggleBacktraceEnabled(); } static void EnableDump(int, siginfo_t*, void*) { g_debug->pointer->EnableDumping(); } PointerData::PointerData(DebugData* debug_data) : OptionData(debug_data) {} bool PointerData::Initialize(const Config& config) NO_THREAD_SAFETY_ANALYSIS { pointers_.clear(); key_to_index_.clear(); frames_.clear(); free_pointers_.clear(); // A hash index of kBacktraceEmptyIndex indicates that we tried to get // a backtrace, but there was nothing recorded. cur_hash_index_ = kBacktraceEmptyIndex + 1; backtrace_enabled_ = config.backtrace_enabled(); if (config.backtrace_enable_on_signal()) { struct sigaction64 enable_act = {}; enable_act.sa_sigaction = ToggleBacktraceEnable; enable_act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK; if (sigaction64(config.backtrace_signal(), &enable_act, nullptr) != 0) { error_log("Unable to set up backtrace signal enable function: %s", strerror(errno)); return false; } if (config.options() & VERBOSE) { info_log("%s: Run: 'kill -%d %d' to enable backtracing.", getprogname(), config.backtrace_signal(), getpid()); } } if (config.options() & BACKTRACE) { struct sigaction64 act = {}; act.sa_sigaction = EnableDump; act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK; if (sigaction64(config.backtrace_dump_signal(), &act, nullptr) != 0) { error_log("Unable to set up backtrace dump signal function: %s", strerror(errno)); return false; } if (config.options() & VERBOSE) { info_log("%s: Run: 'kill -%d %d' to dump the backtrace.", getprogname(), config.backtrace_dump_signal(), getpid()); } } backtrace_dump_ = false; if (config.options() & FREE_TRACK) { g_cmp_mem.resize(kCompareBufferSize, config.fill_free_value()); } return true; } size_t PointerData::AddBacktrace(size_t num_frames) { std::vector frames; std::vector frames_info; if (g_debug->config().options() & BACKTRACE_FULL) { if (!Unwind(&frames, &frames_info, num_frames)) { return kBacktraceEmptyIndex; } } else { frames.resize(num_frames); num_frames = backtrace_get(frames.data(), frames.size()); if (num_frames == 0) { return kBacktraceEmptyIndex; } } FrameKeyType key{.num_frames = num_frames, .frames = frames.data()}; size_t hash_index; std::lock_guard frame_guard(frame_mutex_); auto entry = key_to_index_.find(key); if (entry == key_to_index_.end()) { frames.resize(num_frames); hash_index = cur_hash_index_++; key.frames = frames.data(); key_to_index_.emplace(key, hash_index); frames_.emplace(hash_index, FrameInfoType{.references = 1, .frames = std::move(frames)}); if (g_debug->config().options() & BACKTRACE_FULL) { backtraces_info_.emplace(hash_index, std::move(frames_info)); } } else { hash_index = entry->second; FrameInfoType* frame_info = &frames_[hash_index]; frame_info->references++; } return hash_index; } void PointerData::RemoveBacktrace(size_t hash_index) { if (hash_index <= kBacktraceEmptyIndex) { return; } std::lock_guard frame_guard(frame_mutex_); auto frame_entry = frames_.find(hash_index); if (frame_entry == frames_.end()) { error_log("hash_index %zu does not have matching frame data.", hash_index); return; } FrameInfoType* frame_info = &frame_entry->second; if (--frame_info->references == 0) { FrameKeyType key{.num_frames = frame_info->frames.size(), .frames = frame_info->frames.data()}; key_to_index_.erase(key); frames_.erase(hash_index); if (g_debug->config().options() & BACKTRACE_FULL) { backtraces_info_.erase(hash_index); } } } void PointerData::Add(const void* ptr, size_t pointer_size) { uintptr_t pointer = reinterpret_cast(ptr); size_t hash_index = 0; if (backtrace_enabled_) { hash_index = AddBacktrace(g_debug->config().backtrace_frames()); } std::lock_guard pointer_guard(pointer_mutex_); pointers_[pointer] = PointerInfoType{PointerInfoType::GetEncodedSize(pointer_size), hash_index}; } void PointerData::Remove(const void* ptr) { uintptr_t pointer = reinterpret_cast(ptr); size_t hash_index; { std::lock_guard pointer_guard(pointer_mutex_); auto entry = pointers_.find(pointer); if (entry == pointers_.end()) { // Attempt to remove unknown pointer. error_log("No tracked pointer found for 0x%" PRIxPTR, pointer); return; } hash_index = entry->second.hash_index; pointers_.erase(pointer); } RemoveBacktrace(hash_index); } size_t PointerData::GetFrames(const void* ptr, uintptr_t* frames, size_t max_frames) { uintptr_t pointer = reinterpret_cast(ptr); size_t hash_index; { std::lock_guard pointer_guard(pointer_mutex_); auto entry = pointers_.find(pointer); if (entry == pointers_.end()) { return 0; } hash_index = entry->second.hash_index; } if (hash_index <= kBacktraceEmptyIndex) { return 0; } std::lock_guard frame_guard(frame_mutex_); auto frame_entry = frames_.find(hash_index); if (frame_entry == frames_.end()) { return 0; } FrameInfoType* frame_info = &frame_entry->second; if (max_frames > frame_info->frames.size()) { max_frames = frame_info->frames.size(); } memcpy(frames, &frame_info->frames[0], max_frames * sizeof(uintptr_t)); return max_frames; } void PointerData::LogBacktrace(size_t hash_index) { std::lock_guard frame_guard(frame_mutex_); if (g_debug->config().options() & BACKTRACE_FULL) { auto backtrace_info_entry = backtraces_info_.find(hash_index); if (backtrace_info_entry != backtraces_info_.end()) { UnwindLog(backtrace_info_entry->second); return; } } else { auto frame_entry = frames_.find(hash_index); if (frame_entry != frames_.end()) { FrameInfoType* frame_info = &frame_entry->second; backtrace_log(frame_info->frames.data(), frame_info->frames.size()); return; } } error_log(" hash_index %zu does not have matching frame data.", hash_index); } void PointerData::LogFreeError(const FreePointerInfoType& info, size_t max_cmp_bytes) { error_log(LOG_DIVIDER); uint8_t* memory = reinterpret_cast(info.pointer); error_log("+++ ALLOCATION %p USED AFTER FREE", memory); uint8_t fill_free_value = g_debug->config().fill_free_value(); for (size_t i = 0; i < max_cmp_bytes; i++) { if (memory[i] != fill_free_value) { error_log(" allocation[%zu] = 0x%02x (expected 0x%02x)", i, memory[i], fill_free_value); } } if (info.hash_index > kBacktraceEmptyIndex) { error_log("Backtrace at time of free:"); LogBacktrace(info.hash_index); } error_log(LOG_DIVIDER); if (g_debug->config().options() & ABORT_ON_ERROR) { abort(); } } void PointerData::VerifyFreedPointer(const FreePointerInfoType& info) { size_t usable_size; if (g_debug->HeaderEnabled()) { // Check to see if the tag data has been damaged. Header* header = g_debug->GetHeader(reinterpret_cast(info.pointer)); if (header->tag != DEBUG_FREE_TAG) { error_log(LOG_DIVIDER); error_log("+++ ALLOCATION 0x%" PRIxPTR " HAS CORRUPTED HEADER TAG 0x%x AFTER FREE", info.pointer, header->tag); error_log(LOG_DIVIDER); if (g_debug->config().options() & ABORT_ON_ERROR) { abort(); } // Stop processing here, it is impossible to tell how the header // may have been damaged. return; } usable_size = header->usable_size; } else { usable_size = g_dispatch->malloc_usable_size(reinterpret_cast(info.pointer)); } size_t bytes = (usable_size < g_debug->config().fill_on_free_bytes()) ? usable_size : g_debug->config().fill_on_free_bytes(); size_t max_cmp_bytes = bytes; const uint8_t* memory = reinterpret_cast(info.pointer); while (bytes > 0) { size_t bytes_to_cmp = (bytes < g_cmp_mem.size()) ? bytes : g_cmp_mem.size(); if (memcmp(memory, g_cmp_mem.data(), bytes_to_cmp) != 0) { LogFreeError(info, max_cmp_bytes); } bytes -= bytes_to_cmp; memory = &memory[bytes_to_cmp]; } } void* PointerData::AddFreed(const void* ptr) { uintptr_t pointer = reinterpret_cast(ptr); size_t hash_index = 0; size_t num_frames = g_debug->config().free_track_backtrace_num_frames(); if (num_frames) { hash_index = AddBacktrace(num_frames); } void* last = nullptr; std::lock_guard freed_guard(free_pointer_mutex_); if (free_pointers_.size() == g_debug->config().free_track_allocations()) { FreePointerInfoType info(free_pointers_.front()); free_pointers_.pop_front(); VerifyFreedPointer(info); RemoveBacktrace(info.hash_index); last = reinterpret_cast(info.pointer); } free_pointers_.emplace_back(FreePointerInfoType{pointer, hash_index}); return last; } void PointerData::LogFreeBacktrace(const void* ptr) { size_t hash_index = 0; { uintptr_t pointer = reinterpret_cast(ptr); std::lock_guard freed_guard(free_pointer_mutex_); for (const auto& info : free_pointers_) { if (info.pointer == pointer) { hash_index = info.hash_index; break; } } } if (hash_index <= kBacktraceEmptyIndex) { return; } error_log("Backtrace of original free:"); LogBacktrace(hash_index); } void PointerData::VerifyAllFreed() { std::lock_guard freed_guard(free_pointer_mutex_); for (auto& free_info : free_pointers_) { VerifyFreedPointer(free_info); } } void PointerData::GetList(std::vector* list, bool only_with_backtrace) REQUIRES(pointer_mutex_, frame_mutex_) { for (const auto& entry : pointers_) { FrameInfoType* frame_info = nullptr; std::vector* backtrace_info = nullptr; size_t hash_index = entry.second.hash_index; if (hash_index > kBacktraceEmptyIndex) { auto frame_entry = frames_.find(hash_index); if (frame_entry == frames_.end()) { // Somehow wound up with a pointer with a valid hash_index, but // no frame data. This should not be possible since adding a pointer // occurs after the hash_index and frame data have been added. // When removing a pointer, the pointer is deleted before the frame // data. error_log("Pointer 0x%" PRIxPTR " hash_index %zu does not exist.", entry.first, hash_index); } else { frame_info = &frame_entry->second; } if (g_debug->config().options() & BACKTRACE_FULL) { auto backtrace_entry = backtraces_info_.find(hash_index); if (backtrace_entry == backtraces_info_.end()) { error_log("Pointer 0x%" PRIxPTR " hash_index %zu does not exist.", entry.first, hash_index); } else { backtrace_info = &backtrace_entry->second; } } } if (hash_index == 0 && only_with_backtrace) { continue; } list->emplace_back(ListInfoType{entry.first, 1, entry.second.RealSize(), entry.second.ZygoteChildAlloc(), frame_info, backtrace_info}); } // Sort by the size of the allocation. std::sort(list->begin(), list->end(), [](const ListInfoType& a, const ListInfoType& b) { // Put zygote child allocations first. bool a_zygote_child_alloc = a.zygote_child_alloc; bool b_zygote_child_alloc = b.zygote_child_alloc; if (a_zygote_child_alloc && !b_zygote_child_alloc) { return false; } if (!a_zygote_child_alloc && b_zygote_child_alloc) { return true; } // Sort by size, descending order. if (a.size != b.size) return a.size > b.size; // Put pointers with no backtrace last. FrameInfoType* a_frame = a.frame_info; FrameInfoType* b_frame = b.frame_info; if (a_frame == nullptr && b_frame != nullptr) { return false; } else if (a_frame != nullptr && b_frame == nullptr) { return true; } else if (a_frame == nullptr && b_frame == nullptr) { return a.pointer < b.pointer; } // Put the pointers with longest backtrace first. if (a_frame->frames.size() != b_frame->frames.size()) { return a_frame->frames.size() > b_frame->frames.size(); } // Last sort by pointer. return a.pointer < b.pointer; }); } void PointerData::GetUniqueList(std::vector* list, bool only_with_backtrace) REQUIRES(pointer_mutex_, frame_mutex_) { GetList(list, only_with_backtrace); // Remove duplicates of size/backtraces. for (auto iter = list->begin(); iter != list->end();) { auto dup_iter = iter + 1; bool zygote_child_alloc = iter->zygote_child_alloc; size_t size = iter->size; FrameInfoType* frame_info = iter->frame_info; for (; dup_iter != list->end(); ++dup_iter) { if (zygote_child_alloc != dup_iter->zygote_child_alloc || size != dup_iter->size || frame_info != dup_iter->frame_info) { break; } iter->num_allocations++; } iter = list->erase(iter + 1, dup_iter); } } void PointerData::LogLeaks() { std::vector list; std::lock_guard pointer_guard(pointer_mutex_); std::lock_guard frame_guard(frame_mutex_); GetList(&list, false); size_t track_count = 0; for (const auto& list_info : list) { error_log("+++ %s leaked block of size %zu at 0x%" PRIxPTR " (leak %zu of %zu)", getprogname(), list_info.size, list_info.pointer, ++track_count, list.size()); if (list_info.backtrace_info != nullptr) { error_log("Backtrace at time of allocation:"); UnwindLog(*list_info.backtrace_info); } else if (list_info.frame_info != nullptr) { error_log("Backtrace at time of allocation:"); backtrace_log(list_info.frame_info->frames.data(), list_info.frame_info->frames.size()); } // Do not bother to free the pointers, we are about to exit any way. } } void PointerData::GetAllocList(std::vector* list) { std::lock_guard pointer_guard(pointer_mutex_); std::lock_guard frame_guard(frame_mutex_); if (pointers_.empty()) { return; } GetList(list, false); } void PointerData::GetInfo(uint8_t** info, size_t* overall_size, size_t* info_size, size_t* total_memory, size_t* backtrace_size) { std::lock_guard pointer_guard(pointer_mutex_); std::lock_guard frame_guard(frame_mutex_); if (pointers_.empty()) { return; } std::vector list; GetUniqueList(&list, true); if (list.empty()) { return; } *backtrace_size = g_debug->config().backtrace_frames(); *info_size = sizeof(size_t) * 2 + sizeof(uintptr_t) * *backtrace_size; *overall_size = *info_size * list.size(); *info = reinterpret_cast(g_dispatch->calloc(*info_size, list.size())); if (*info == nullptr) { return; } uint8_t* data = *info; *total_memory = 0; for (const auto& list_info : list) { FrameInfoType* frame_info = list_info.frame_info; *total_memory += list_info.size * list_info.num_allocations; size_t allocation_size = PointerInfoType::GetEncodedSize(list_info.zygote_child_alloc, list_info.size); memcpy(data, &allocation_size, sizeof(size_t)); memcpy(&data[sizeof(size_t)], &list_info.num_allocations, sizeof(size_t)); if (frame_info != nullptr) { memcpy(&data[2 * sizeof(size_t)], frame_info->frames.data(), frame_info->frames.size() * sizeof(uintptr_t)); } data += *info_size; } } bool PointerData::Exists(const void* ptr) { uintptr_t pointer = reinterpret_cast(ptr); std::lock_guard pointer_guard(pointer_mutex_); return pointers_.count(pointer) != 0; } void PointerData::DumpLiveToFile(int fd) { std::vector list; std::lock_guard pointer_guard(pointer_mutex_); std::lock_guard frame_guard(frame_mutex_); GetUniqueList(&list, false); size_t total_memory = 0; for (const auto& info : list) { total_memory += info.size * info.num_allocations; } dprintf(fd, "Total memory: %zu\n", total_memory); dprintf(fd, "Allocation records: %zd\n", list.size()); dprintf(fd, "Backtrace size: %zu\n", g_debug->config().backtrace_frames()); dprintf(fd, "\n"); for (const auto& info : list) { dprintf(fd, "z %d sz %8zu num %zu bt", (info.zygote_child_alloc) ? 1 : 0, info.size, info.num_allocations); FrameInfoType* frame_info = info.frame_info; if (frame_info != nullptr) { for (size_t i = 0; i < frame_info->frames.size(); i++) { if (frame_info->frames[i] == 0) { break; } dprintf(fd, " %" PRIxPTR, frame_info->frames[i]); } } dprintf(fd, "\n"); if (info.backtrace_info != nullptr) { dprintf(fd, " bt_info"); for (const auto& frame : *info.backtrace_info) { dprintf(fd, " {"); if (frame.map_info != nullptr && !frame.map_info->name().empty()) { dprintf(fd, "\"%s\"", frame.map_info->name().c_str()); } else { dprintf(fd, "\"\""); } dprintf(fd, " %" PRIx64, frame.rel_pc); if (frame.function_name.empty()) { dprintf(fd, " \"\" 0}"); } else { char* demangled_name = __cxa_demangle(frame.function_name.c_str(), nullptr, nullptr, nullptr); const char* name; if (demangled_name != nullptr) { name = demangled_name; } else { name = frame.function_name.c_str(); } dprintf(fd, " \"%s\" %" PRIx64 "}", name, frame.function_offset); free(demangled_name); } } dprintf(fd, "\n"); } } } void PointerData::PrepareFork() NO_THREAD_SAFETY_ANALYSIS { free_pointer_mutex_.lock(); pointer_mutex_.lock(); frame_mutex_.lock(); } void PointerData::PostForkParent() NO_THREAD_SAFETY_ANALYSIS { frame_mutex_.unlock(); pointer_mutex_.unlock(); free_pointer_mutex_.unlock(); } void PointerData::PostForkChild() __attribute__((no_thread_safety_analysis)) { // Make sure that any potential mutexes have been released and are back // to an initial state. frame_mutex_.try_lock(); frame_mutex_.unlock(); pointer_mutex_.try_lock(); pointer_mutex_.unlock(); free_pointer_mutex_.try_lock(); free_pointer_mutex_.unlock(); }