/* * Copyright (C) 2011-2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _LIBRENDER_FRAMEBUFFER_H #define _LIBRENDER_FRAMEBUFFER_H #include #include #include #include #include #include #include #include "ColorBuffer.h" #include "DisplayVk.h" #include "FbConfig.h" #include "GLESVersionDetector.h" #include "Hwc2.h" #include "PostCommands.h" #include "PostWorker.h" #include "ReadbackWorker.h" #include "RenderContext.h" #include "Renderer.h" #include "TextureDraw.h" #include "WindowSurface.h" #include "base/Lock.h" #include "base/MessageChannel.h" #include "base/Stream.h" #include "base/Thread.h" #include "base/WorkerThread.h" #include "render_api.h" #include "snapshot/common.h" #include "vulkan/vk_util.h" struct ColorBufferRef { ColorBufferPtr cb; uint32_t refcount; // number of client-side references // Tracks whether opened at least once. In O+, // color buffers can be created/closed immediately, // but then registered (opened) afterwards. bool opened; // Tracks the time when this buffer got a close request while not being // opened yet. uint64_t closedTs; }; struct BufferRef { BufferPtr buffer; }; typedef std::unordered_map> WindowSurfaceMap; typedef std::unordered_set WindowSurfaceSet; typedef std::unordered_map ProcOwnedWindowSurfaces; typedef std::unordered_map RenderContextMap; typedef std::unordered_set RenderContextSet; typedef std::unordered_map ProcOwnedRenderContexts; typedef std::unordered_map ColorBufferMap; typedef std::unordered_multiset ColorBufferSet; typedef std::unordered_map ProcOwnedColorBuffers; typedef std::unordered_map BufferMap; typedef std::unordered_multiset BufferSet; typedef std::unordered_map ProcOwnedBuffers; typedef std::unordered_set EGLImageSet; typedef std::unordered_map ProcOwnedEGLImages; typedef std::unordered_map> CallbackMap; typedef std::unordered_map ProcOwnedCleanupCallbacks; typedef std::unordered_map ProcOwnedSequenceNumbers; // A structure used to list the capabilities of the underlying EGL // implementation that the FrameBuffer instance depends on. // |has_eglimage_texture_2d| is true iff the EGL_KHR_gl_texture_2D_image // extension is supported. // |has_eglimage_renderbuffer| is true iff the EGL_KHR_gl_renderbuffer_image // extension is supported. // |eglMajor| and |eglMinor| are the major and minor version numbers of // the underlying EGL implementation. struct FrameBufferCaps { bool has_eglimage_texture_2d; bool has_eglimage_renderbuffer; EGLint eglMajor; EGLint eglMinor; }; // The FrameBuffer class holds the global state of the emulation library on // top of the underlying EGL/GLES implementation. It should probably be // named "Display" instead of "FrameBuffer". // // There is only one global instance, that can be retrieved with getFB(), // and which must be previously setup by calling initialize(). // class FrameBuffer { public: // Initialize the global instance. // |width| and |height| are the dimensions of the emulator GPU display // in pixels. |useSubWindow| is true to indicate that the caller // will use setupSubWindow() to let EmuGL display the GPU content in its // own sub-windows. If false, this means the caller will use // setPostCallback() instead to retrieve the content. // Returns true on success, false otherwise. static bool initialize(int width, int height, bool useSubWindow, bool egl2egl); // Setup a sub-window to display the content of the emulated GPU // on-top of an existing UI window. |p_window| is the platform-specific // parent window handle. |wx|, |wy|, |ww| and |wh| are the // dimensions in pixels of the sub-window, relative to the parent window's // coordinate. |fbw| and |fbh| are the dimensions used to initialize // the framebuffer, which may be different from the dimensions of the // sub-window (in which case scaling will be applied automatically). // |dpr| is the device pixel ratio of the monitor, which is needed for // proper panning on high-density displays (like retina) // |zRot| is a rotation angle in degrees, (clockwise in the Y-upwards GL // coordinate space). // // If a sub-window already exists, this function updates the subwindow // and framebuffer properties to match the given values. // // Return true on success, false otherwise. // // NOTE: This can return false for software-only EGL engines like OSMesa. bool setupSubWindow(FBNativeWindowType p_window, int wx, int wy, int ww, int wh, int fbw, int fbh, float dpr, float zRot, bool deleteExisting, bool hideWindow); // Remove the sub-window created by setupSubWindow(), if any. // Return true on success, false otherwise. bool removeSubWindow(); // Finalize the instance. void finalize(); // Return a pointer to the global instance. initialize() must be called // previously, or this will return NULL. static FrameBuffer* getFB() { return s_theFrameBuffer; } // Wait for a FrameBuffer instance to be initialized and ready to use. // This function blocks the caller until there is a valid initialized // object in getFB() and static void waitUntilInitialized(); // Return the capabilities of the underlying display. const FrameBufferCaps& getCaps() const { return m_caps; } // Return the emulated GPU display width in pixels. int getWidth() const { return m_framebufferWidth; } // Return the emulated GPU display height in pixels. int getHeight() const { return m_framebufferHeight; } // Return the list of configs available from this display. const FbConfigList* getConfigs() const { return m_configs; } // Set a callback that will be called each time the emulated GPU content // is updated. This can be relatively slow with host-based GPU emulation, // so only do this when you need to. void setPostCallback(emugl::Renderer::OnPostCallback onPost, void* onPostContext, uint32_t displayId, bool useBgraReadback = false); // Retrieve the GL strings of the underlying EGL/GLES implementation. // On return, |*vendor|, |*renderer| and |*version| will point to strings // that are owned by the instance (and must not be freed by the caller). void getGLStrings(const char** vendor, const char** renderer, const char** version) const { *vendor = m_glVendor.c_str(); *renderer = m_glRenderer.c_str(); *version = m_glVersion.c_str(); } // Create a new RenderContext instance for this display instance. // |p_config| is the index of one of the configs returned by getConfigs(). // |p_share| is either EGL_NO_CONTEXT or the handle of a shared context. // |version| specifies the GLES version as a GLESApi enum. // Return a new handle value, which will be 0 in case of error. HandleType createRenderContext(int p_config, HandleType p_share, GLESApi version = GLESApi_CM); // Create a new WindowSurface instance from this display instance. // |p_config| is the index of one of the configs returned by getConfigs(). // |p_width| and |p_height| are the window dimensions in pixels. // Return a new handle value, or 0 in case of error. HandleType createWindowSurface(int p_config, int p_width, int p_height); // Create a new ColorBuffer instance from this display instance. // |p_width| and |p_height| are its dimensions in pixels. // |p_internalFormat| is the OpenGL format of this color buffer. // |p_frameworkFormat| describes the Android frameework format of this // color buffer, if differing from |p_internalFormat|. // See ColorBuffer::create() for // list of valid values. Note that ColorBuffer instances are reference- // counted. Use openColorBuffer / closeColorBuffer to operate on the // internal count. HandleType createColorBuffer(int p_width, int p_height, GLenum p_internalFormat, FrameworkFormat p_frameworkFormat); // Variant of createColorBuffer except with a particular // handle already assigned. This is for use with // virtio-gpu's RESOURCE_CREATE ioctl. void createColorBufferWithHandle(int p_width, int p_height, GLenum p_internalFormat, FrameworkFormat p_frameworkFormat, HandleType handle); // Create a new data Buffer instance from this display instance. // The buffer will be backed by a VkBuffer and VkDeviceMemory (if Vulkan // is available). // |size| is the requested size of Buffer in bytes. // |memoryProperty| is the requested memory property bits of the device // memory. HandleType createBuffer(uint64_t size, uint32_t memoryProperty); // Call this function when a render thread terminates to destroy all // the remaining contexts it created. Necessary to avoid leaking host // contexts when a guest application crashes, for example. void drainRenderContext(); // Call this function when a render thread terminates to destroy all // remaining window surfqce it created. Necessary to avoid leaking // host buffers when a guest application crashes, for example. void drainWindowSurface(); // Destroy a given RenderContext instance. |p_context| is its handle // value as returned by createRenderContext(). void DestroyRenderContext(HandleType p_context); // Destroy a given WindowSurface instance. |p_surcace| is its handle // value as returned by createWindowSurface(). void DestroyWindowSurface(HandleType p_surface); // Returns the set of ColorBuffers destroyed (for further cleanup) std::vector DestroyWindowSurfaceLocked(HandleType p_surface); // Increment the reference count associated with a given ColorBuffer // instance. |p_colorbuffer| is its handle value as returned by // createColorBuffer(). int openColorBuffer(HandleType p_colorbuffer); // Decrement the reference count associated with a given ColorBuffer // instance. |p_colorbuffer| is its handle value as returned by // createColorBuffer(). Note that if the reference count reaches 0, // the instance is destroyed automatically. void closeColorBuffer(HandleType p_colorbuffer); // Destroy a Buffer created previously. |p_buffer| is its handle value as // returned by createBuffer(). void closeBuffer(HandleType p_colorbuffer); void cleanupProcGLObjects(uint64_t puid); // Equivalent for eglMakeCurrent() for the current display. // |p_context|, |p_drawSurface| and |p_readSurface| are the handle values // of the context, the draw surface and the read surface, respectively. // Returns true on success, false on failure. // Note: if all handle values are 0, this is an unbind operation. bool bindContext(HandleType p_context, HandleType p_drawSurface, HandleType p_readSurface); // Return a render context pointer from its handle RenderContextPtr getContext_locked(HandleType p_context); // Return a color buffer pointer from its handle ColorBufferPtr getColorBuffer_locked(HandleType p_colorBuffer); // Return a color buffer pointer from its handle WindowSurfacePtr getWindowSurface_locked(HandleType p_windowsurface); // Attach a ColorBuffer to a WindowSurface instance. // See the documentation for WindowSurface::setColorBuffer(). // |p_surface| is the target WindowSurface's handle value. // |p_colorbuffer| is the ColorBuffer handle value. // Returns true on success, false otherwise. bool setWindowSurfaceColorBuffer(HandleType p_surface, HandleType p_colorbuffer); // Copy the content of a WindowSurface's Pbuffer to its attached // ColorBuffer. See the documentation for WindowSurface::flushColorBuffer() // |p_surface| is the target WindowSurface's handle value. // Returns true on success, false on failure. bool flushWindowSurfaceColorBuffer(HandleType p_surface); // Retrieves the color buffer handle associated with |p_surface|. // Returns 0 if there is no such handle. HandleType getWindowSurfaceColorBufferHandle(HandleType p_surface); // Bind the current context's EGL_TEXTURE_2D texture to a ColorBuffer // instance's EGLImage. This is intended to implement // glEGLImageTargetTexture2DOES() for all GLES versions. // |p_colorbuffer| is the ColorBuffer's handle value. // Returns true on success, false on failure. bool bindColorBufferToTexture(HandleType p_colorbuffer); bool bindColorBufferToTexture2(HandleType p_colorbuffer); // Bind the current context's EGL_RENDERBUFFER_OES render buffer to this // ColorBuffer's EGLImage. This is intended to implement // glEGLImageTargetRenderbufferStorageOES() for all GLES versions. // |p_colorbuffer| is the ColorBuffer's handle value. // Returns true on success, false on failure. bool bindColorBufferToRenderbuffer(HandleType p_colorbuffer); // Read the content of a given ColorBuffer into client memory. // |p_colorbuffer| is the ColorBuffer's handle value. Similar // to glReadPixels(), this can be a slow operation. // |x|, |y|, |width| and |height| are the position and dimensions of // a rectangle whose pixel values will be transfered to the host. // |format| indicates the format of the pixel data, e.g. GL_RGB or GL_RGBA. // |type| is the type of pixel data, e.g. GL_UNSIGNED_BYTE. // |pixels| is the address of a caller-provided buffer that will be filled // with the pixel data. void readColorBuffer(HandleType p_colorbuffer, int x, int y, int width, int height, GLenum format, GLenum type, void* pixels); // Read the content of a given YUV420_888 ColorBuffer into client memory. // |p_colorbuffer| is the ColorBuffer's handle value. Similar // to glReadPixels(), this can be a slow operation. // |x|, |y|, |width| and |height| are the position and dimensions of // a rectangle whose pixel values will be transfered to the host. // |pixels| is the address of a caller-provided buffer that will be filled // with the pixel data. // |pixles_size| is the size of buffer void readColorBufferYUV(HandleType p_colorbuffer, int x, int y, int width, int height, void* pixels, uint32_t pixels_size); // create a Y texture and a UV texture with width and height, the created // texture ids are stored in textures respectively void createYUVTextures(uint32_t type, uint32_t count, int width, int height, uint32_t* output); void destroyYUVTextures(uint32_t type, uint32_t count, uint32_t* textures); void updateYUVTextures(uint32_t type, uint32_t* textures, void* privData, void* func); void swapTexturesAndUpdateColorBuffer(uint32_t colorbufferhandle, int x, int y, int width, int height, uint32_t format, uint32_t type, uint32_t texture_type, uint32_t* textures); // Update the content of a given ColorBuffer from client data. // |p_colorbuffer| is the ColorBuffer's handle value. Similar // to glReadPixels(), this can be a slow operation. // |x|, |y|, |width| and |height| are the position and dimensions of // a rectangle whose pixel values will be transfered to the GPU // |format| indicates the format of the OpenGL buffer, e.g. GL_RGB or // GL_RGBA. |frameworkFormat| indicates the format of the pixel data; if // FRAMEWORK_FORMAT_GL_COMPATIBLE, |format| (OpenGL format) is used. // Otherwise, explicit conversion to |format| is needed. // |type| is the type of pixel data, e.g. GL_UNSIGNED_BYTE. // |pixels| is the address of a buffer containing the new pixel data. // Returns true on success, false otherwise. bool updateColorBuffer(HandleType p_colorbuffer, int x, int y, int width, int height, GLenum format, GLenum type, void* pixels); // Replaces contents completely using the color buffer's current format, // with row length equal to width of a row in bytes. // The number of bytes is passed as a check. bool replaceColorBufferContents(HandleType p_colorbuffer, const void* pixels, size_t numBytes); // Reads back the raw color buffer to |pixels| // if |pixels| is not null. // Always returns in |numBytes| how many bytes were // planned to be transmitted. // |numBytes| is not an input parameter; // fewer or more bytes cannot be specified. // If the framework format is YUV, it will read // back as raw YUV data. bool readColorBufferContents(HandleType p_colorbuffer, size_t* numBytes, void* pixels); bool getColorBufferInfo(HandleType p_colorbuffer, int* width, int* height, GLint* internalformat, FrameworkFormat* frameworkFormat = nullptr); bool getBufferInfo(HandleType p_buffer, int* size); // Display the content of a given ColorBuffer into the framebuffer's // sub-window. |p_colorbuffer| is a handle value. // |needLockAndBind| is used to indicate whether the operation requires // acquiring/releasing the FrameBuffer instance's lock and binding the // contexts. It should be |false| only when called internally. bool post(HandleType p_colorbuffer, bool needLockAndBind = true); bool hasGuestPostedAFrame() { return m_guestPostedAFrame; } void resetGuestPostedAFrame() { m_guestPostedAFrame = false; } // Runs the post callback with |pixels| (good for when the readback // happens in a separate place) void doPostCallback(void* pixels, uint32_t displayId); void getPixels(void* pixels, uint32_t bytes, uint32_t displayId); void flushReadPipeline(int displayId); void ensureReadbackWorker(); bool asyncReadbackSupported(); emugl::Renderer::ReadPixelsCallback getReadPixelsCallback(); emugl::Renderer::FlushReadPixelPipeline getFlushReadPixelPipeline(); // Re-post the last ColorBuffer that was displayed through post(). // This is useful if you detect that the sub-window content needs to // be re-displayed for any reason. bool repost(bool needLockAndBind = true); // Return the host EGLDisplay used by this instance. EGLDisplay getDisplay() const { return m_eglDisplay; } EGLSurface getWindowSurface() const { return m_eglSurface; } EGLContext getContext() const { return m_eglContext; } EGLConfig getConfig() const { return m_eglConfig; } // Change the rotation of the displayed GPU sub-window. void setDisplayRotation(float zRot) { if (zRot != m_zRot) { m_zRot = zRot; repost(); } } // Changes what coordinate of this framebuffer will be displayed at the // corner of the GPU sub-window. Specifically, |px| and |py| = 0 means // align the bottom-left of the framebuffer with the bottom-left of the // sub-window, and |px| and |py| = 1 means align the top right of the // framebuffer with the top right of the sub-window. Intermediate values // interpolate between these states. void setDisplayTranslation(float px, float py) { // Sanity check the values to ensure they are between 0 and 1 const float x = px > 1.f ? 1.f : (px < 0.f ? 0.f : px); const float y = py > 1.f ? 1.f : (py < 0.f ? 0.f : py); if (x != m_px || y != m_py) { m_px = x; m_py = y; repost(); } } // Return a TextureDraw instance that can be used with this surfaces // and windows created by this instance. TextureDraw* getTextureDraw() const { return m_textureDraw; } // Create an eglImage and return its handle. Reference: // https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_image_base.txt HandleType createClientImage(HandleType context, EGLenum target, GLuint buffer); // Call the implementation of eglDestroyImageKHR, return if succeeds or // not. Reference: // https://www.khronos.org/registry/egl/extensions/KHR/EGL_KHR_image_base.txt EGLBoolean destroyClientImage(HandleType image); // Used internally. bool bind_locked(); bool unbind_locked(); void lockContextStructureRead() { m_contextStructureLock.lockRead(); } void unlockContextStructureRead() { m_contextStructureLock.unlockRead(); } // For use with sync threads and otherwise, any time we need a GL context // not specifically for drawing, but to obtain certain things about // GL state. // It can be unsafe / leaky to change the structure of contexts // outside the facilities the FrameBuffer class provides. void createTrivialContext(HandleType shared, HandleType* contextOut, HandleType* surfOut); // createAndBindTrivialSharedContext(), but with a m_pbufContext // as shared, and not adding itself to the context map at all. void createAndBindTrivialSharedContext(EGLContext* contextOut, EGLSurface* surfOut); void unbindAndDestroyTrivialSharedContext(EGLContext context, EGLSurface surf); void setShuttingDown() { m_shuttingDown = true; } bool isShuttingDown() const { return m_shuttingDown; } bool compose(uint32_t bufferSize, void* buffer, bool post = true); ~FrameBuffer(); void onSave(android::base::Stream* stream, const android::snapshot::ITextureSaverPtr& textureSaver); bool onLoad(android::base::Stream* stream, const android::snapshot::ITextureLoaderPtr& textureLoader); // lock and unlock handles (RenderContext, ColorBuffer, WindowSurface) void lock(); void unlock(); static void setMaxGLESVersion(GLESDispatchMaxVersion version); static GLESDispatchMaxVersion getMaxGLESVersion(); float getDpr() const { return m_dpr; } int windowWidth() const { return m_windowWidth; } int windowHeight() const { return m_windowHeight; } float getPx() const { return m_px; } float getPy() const { return m_py; } int getZrot() const { return m_zRot; } bool isFastBlitSupported() const { return m_fastBlitSupported; } bool isVulkanInteropSupported() const { return m_vulkanInteropSupported; } bool importMemoryToColorBuffer( #ifdef _WIN32 void* handle, #else int handle, #endif uint64_t size, bool dedicated, bool linearTiling, bool vulkanOnly, uint32_t colorBufferHandle, VkImage, VkFormat); void setColorBufferInUse(uint32_t colorBufferHandle, bool inUse); // Used during tests to disable fast blit. void disableFastBlit(); // Fill GLES usage protobuf void fillGLESUsages(android_studio::EmulatorGLESUsages*); // Save a screenshot of the previous frame. // nChannels should be 3 (RGB) or 4 (RGBA). // Note: swiftshader_indirect does not work with 3 channels void getScreenshot(unsigned int nChannels, unsigned int* width, unsigned int* height, std::vector& pixels, int displayId, int desiredWidth, int desiredHeight, int desiredRotation); void onLastColorBufferRef(uint32_t handle); ColorBuffer::Helper* getColorBufferHelper() { return m_colorBufferHelper; } ColorBufferPtr findColorBuffer(HandleType p_colorbuffer); void registerProcessCleanupCallback(void* key, std::function callback); void unregisterProcessCleanupCallback(void* key); void registerProcessSequenceNumberForPuid(uint64_t puid); uint32_t* getProcessSequenceNumberPtr(uint64_t puid); int createDisplay(uint32_t *displayId); int createDisplay(uint32_t displayId); int destroyDisplay(uint32_t displayId); int setDisplayColorBuffer(uint32_t displayId, uint32_t colorBuffer); int getDisplayColorBuffer(uint32_t displayId, uint32_t* colorBuffer); int getColorBufferDisplay(uint32_t colorBuffer, uint32_t* displayId); int getDisplayPose(uint32_t displayId, int32_t* x, int32_t* y, uint32_t* w, uint32_t* h); int setDisplayPose(uint32_t displayId, int32_t x, int32_t y, uint32_t w, uint32_t h, uint32_t dpi = 0); void getCombinedDisplaySize(int* w, int* h); struct DisplayInfo { uint32_t cb; int32_t pos_x; int32_t pos_y; uint32_t width; uint32_t height; uint32_t dpi; DisplayInfo() : cb(0), pos_x(0), pos_y(0), width(0), height(0), dpi(0){}; DisplayInfo(uint32_t cb, int32_t x, int32_t y, uint32_t w, uint32_t h, uint32_t d) : cb(cb), pos_x(x), pos_y(y), width(w), height(h), dpi(d) {} }; // Inline with MultiDisplay::s_invalidIdMultiDisplay static const uint32_t s_invalidIdMultiDisplay = 0xFFFFFFAB; static const uint32_t s_maxNumMultiDisplay = 11; EGLContext getGlobalEGLContext() { return m_pbufContext; } HandleType getLastPostedColorBuffer() { return m_lastPostedColorBuffer; } void waitForGpu(uint64_t eglsync); void waitForGpuVulkan(uint64_t deviceHandle, uint64_t fenceHandle); void setGuestManagedColorBufferLifetime(bool guestManaged); VkImageLayout getVkImageLayoutForPresent() const; private: FrameBuffer(int p_width, int p_height, bool useSubWindow); HandleType genHandle_locked(); bool bindSubwin_locked(); bool bindFakeWindow_locked(); bool removeSubWindow_locked(); // Returns the set of ColorBuffers destroyed (for further cleanup) std::vector cleanupProcGLObjects_locked(uint64_t puid, bool forced = false); void markOpened(ColorBufferRef* cbRef); // Returns true if the color buffer was erased. bool closeColorBufferLocked(HandleType p_colorbuffer, bool forced = false); // Returns true if this was the last ref and we need to destroy stuff. bool decColorBufferRefCountLocked(HandleType p_colorbuffer); // Close all expired color buffers for real. // Treat all delayed color buffers as expired if forced=true void performDelayedColorBufferCloseLocked(bool forced = false); void eraseDelayedCloseColorBufferLocked(HandleType cb, uint64_t ts); bool postImpl(HandleType p_colorbuffer, bool needLockAndBind = true, bool repaint = false); void setGuestPostedAFrame() { m_guestPostedAFrame = true; } HandleType createColorBufferLocked(int p_width, int p_height, GLenum p_internalFormat, FrameworkFormat p_frameworkFormat); HandleType createColorBufferWithHandleLocked( int p_width, int p_height, GLenum p_internalFormat, FrameworkFormat p_frameworkFormat, HandleType handle); HandleType createBufferLocked(int p_size); HandleType createBufferWithHandleLocked(int p_size, HandleType handle); void recomputeLayout(); void setDisplayPoseInSkinUI(int totalHeight); void sweepColorBuffersLocked(); private: static FrameBuffer* s_theFrameBuffer; static HandleType s_nextHandle; int m_x = 0; int m_y = 0; int m_framebufferWidth = 0; int m_framebufferHeight = 0; int m_windowWidth = 0; int m_windowHeight = 0; float m_dpr = 0; bool m_useSubWindow = false; bool m_eglContextInitialized = false; bool m_fpsStats = false; bool m_perfStats = false; int m_statsNumFrames = 0; long long m_statsStartTime = 0; android::base::Thread* m_perfThread; android::base::Lock m_lock; android::base::ReadWriteLock m_contextStructureLock; FbConfigList* m_configs = nullptr; FBNativeWindowType m_nativeWindow = 0; FrameBufferCaps m_caps = {}; EGLDisplay m_eglDisplay = EGL_NO_DISPLAY; RenderContextMap m_contexts; WindowSurfaceMap m_windows; ColorBufferMap m_colorbuffers; BufferMap m_buffers; std::unordered_map m_windowSurfaceToColorBuffer; // A collection of color buffers that were closed without any usages // (|opened| == false). // // If a buffer reached |refcount| == 0 while not being |opened|, instead of // deleting it we remember the timestamp when this happened. Later, we // check if the buffer stayed unopened long enough and if it did, we delete // it permanently. On the other hand, if the color buffer was used then // we don't care about timestamps anymore. // // Note: this collection is ordered by |ts| field. struct ColorBufferCloseInfo { uint64_t ts; // when we got the close request. HandleType cbHandle; // 0 == already closed, do nothing }; using ColorBufferDelayedClose = std::vector; ColorBufferDelayedClose m_colorBufferDelayedCloseList; ColorBuffer::Helper* m_colorBufferHelper = nullptr; EGLSurface m_eglSurface = EGL_NO_SURFACE; EGLContext m_eglContext = EGL_NO_CONTEXT; EGLSurface m_pbufSurface = EGL_NO_SURFACE; EGLContext m_pbufContext = EGL_NO_CONTEXT; EGLSurface m_eglFakeWindowSurface = EGL_NO_SURFACE; EGLContext m_eglFakeWindowContext = EGL_NO_CONTEXT; EGLContext m_prevContext = EGL_NO_CONTEXT; EGLSurface m_prevReadSurf = EGL_NO_SURFACE; EGLSurface m_prevDrawSurf = EGL_NO_SURFACE; EGLNativeWindowType m_subWin = {}; TextureDraw* m_textureDraw = nullptr; EGLConfig m_eglConfig = nullptr; HandleType m_lastPostedColorBuffer = 0; // With Vulkan swapchain, compose also means to post to the WSI surface. // In this case, don't do anything in the subsequent resource flush. bool m_justVkComposed = false; float m_zRot = 0; float m_px = 0; float m_py = 0; // Async readback enum class ReadbackCmd { Init = 0, GetPixels = 1, AddRecordDisplay = 2, DelRecordDisplay = 3, Exit = 4, }; struct Readback { ReadbackCmd cmd; uint32_t displayId; GLuint bufferId; void* pixelsOut; uint32_t bytes; uint32_t width; uint32_t height; }; android::base::WorkerProcessingResult sendReadbackWorkerCmd( const Readback& readback); bool m_asyncReadbackSupported = true; bool m_guestPostedAFrame = false; struct onPost { emugl::Renderer::OnPostCallback cb; void* context; uint32_t displayId; uint32_t width; uint32_t height; unsigned char* img = nullptr; bool readBgra; ~onPost() { if (img) { delete[] img; img = nullptr; } } }; std::map m_onPost; std::unique_ptr m_readbackWorker; android::base::WorkerThread m_readbackThread; std::string m_glVendor; std::string m_glRenderer; std::string m_glVersion; // The host associates color buffers with guest processes for memory // cleanup. Guest processes are identified with a host generated unique ID. ProcOwnedWindowSurfaces m_procOwnedWindowSurfaces; ProcOwnedColorBuffers m_procOwnedColorBuffers; ProcOwnedEGLImages m_procOwnedEGLImages; ProcOwnedRenderContexts m_procOwnedRenderContext; ProcOwnedCleanupCallbacks m_procOwnedCleanupCallbacks; ProcOwnedSequenceNumbers m_procOwnedSequenceNumbers; // Flag set when emulator is shutting down. bool m_shuttingDown = false; // When this feature is enabled, open/close operations from gralloc in guest // will no longer control the reference counting of color buffers on host. // Instead, it will be managed by a file descriptor in the guest kernel. In // case all the native handles in guest are destroyed, the pipe will be // automatically closed by the kernel. We only need to do reference counting // for color buffers attached in window surface. bool m_refCountPipeEnabled = false; // When this feature is enabled, and m_refCountPipeEnabled == false, color // buffer close operations will immediately close the color buffer if host // refcount hits 0. This is for use with guest kernels where the color // buffer is already tied to a file descriptor in the guest kernel. bool m_noDelayCloseColorBufferEnabled = false; std::unique_ptr m_postWorker = {}; android::base::WorkerThread m_postThread; android::base::WorkerProcessingResult postWorkerFunc(const Post& post); void sendPostWorkerCmd(Post post); bool m_fastBlitSupported = false; bool m_vulkanInteropSupported = false; bool m_guestUsesAngle = false; // Whether the guest manages ColorBuffer lifetime // so we don't need refcounting on the host side. bool m_guestManagedColorBufferLifetime = false; android::base::MessageChannel mOutstandingColorBufferDestroys; // The implementation for Vulkan native swapchain. Only initialized when // useVulkan is set when calling FrameBuffer::initialize(). std::unique_ptr m_displayVk; VkInstance m_vkInstance = VK_NULL_HANDLE; VkSurfaceKHR m_vkSurface = VK_NULL_HANDLE; }; #endif