// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include #include #include #include #include "procs.h" #ifndef M_PI #define M_PI 3.14159265358979323846264338327950288 #endif static int test_radians_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems); const char *radians_kernel_code = "__kernel void test_radians(__global float *src, __global float *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = radians(src[tid]);\n" "}\n"; const char *radians2_kernel_code = "__kernel void test_radians2(__global float2 *src, __global float2 *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = radians(src[tid]);\n" "}\n"; const char *radians4_kernel_code = "__kernel void test_radians4(__global float4 *src, __global float4 *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = radians(src[tid]);\n" "}\n"; const char *radians8_kernel_code = "__kernel void test_radians8(__global float8 *src, __global float8 *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = radians(src[tid]);\n" "}\n"; const char *radians16_kernel_code = "__kernel void test_radians16(__global float16 *src, __global float16 *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " dst[tid] = radians(src[tid]);\n" "}\n"; const char *radians3_kernel_code = "__kernel void test_radians3(__global float *src, __global float *dst)\n" "{\n" " int tid = get_global_id(0);\n" "\n" " vstore3(radians(vload3(tid,src)),tid,dst);\n" "}\n"; #define MAX_ERR 2.0f static float verify_radians(float *inptr, float *outptr, int n) { float error, max_error = 0.0f; double r, max_val = NAN; int i, j, max_index = 0; for (i=0,j=0; i max_error) { max_error = error; max_index = i; max_val = r; if( fabsf(error) > MAX_ERR) { log_error( "%d) Error @ %a: *%a vs %a (*%g vs %g) ulps: %f\n", i, inptr[i], r, outptr[i], r, outptr[i], error ); return 1; } } } log_info( "radians: Max error %f ulps at %d: *%a vs %a (*%g vs %g)\n", max_error, max_index, max_val, outptr[max_index], max_val, outptr[max_index] ); return 0; } int test_radians(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems) { cl_mem streams[2]; cl_float *input_ptr[1], *output_ptr, *p; cl_program *program; cl_kernel *kernel; void *values[2]; size_t threads[1]; int num_elements; int err; int i; MTdata d; program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount); kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount); num_elements = n_elems * (1 << (kTotalVecCount-1)); input_ptr[0] = (cl_float*)malloc(sizeof(cl_float) * num_elements); output_ptr = (cl_float*)malloc(sizeof(cl_float) * num_elements); streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_float) * num_elements, NULL, NULL); if (!streams[0]) { log_error("clCreateBuffer failed\n"); return -1; } streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_float) * num_elements, NULL, NULL); if (!streams[1]) { log_error("clCreateBuffer failed\n"); return -1; } p = input_ptr[0]; d = init_genrand( gRandomSeed ); for (i=0; i max_error) { max_error = error; max_index = i; max_val = r; if( fabsf(error) > MAX_ERR) { log_error( "%d) Error @ %a: *%a vs %a (*%g vs %g) ulps: %f\n", i, inptr[i], r, outptr[i], r, outptr[i], error ); return 1; } } } log_info( "radiansd: Max error %f ulps at %d: *%a vs %a (*%g vs %g)\n", max_error, max_index, max_val, outptr[max_index], max_val, outptr[max_index] ); return 0; } int test_radians_double(cl_device_id device, cl_context context, cl_command_queue queue, int n_elems) { cl_mem streams[2]; cl_double *input_ptr[1], *output_ptr, *p; cl_program *program; cl_kernel *kernel; void *values[2]; size_t threads[1]; int num_elements; int err; int i; MTdata d; program = (cl_program*)malloc(sizeof(cl_program)*kTotalVecCount); kernel = (cl_kernel*)malloc(sizeof(cl_kernel)*kTotalVecCount); //TODO: line below is clearly wrong num_elements = n_elems * (1 << (kTotalVecCount-1)); input_ptr[0] = (cl_double*)malloc(sizeof(cl_double) * num_elements); output_ptr = (cl_double*)malloc(sizeof(cl_double) * num_elements); streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_double) * num_elements, NULL, NULL); if (!streams[0]) { log_error("clCreateBuffer failed\n"); return -1; } streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(cl_double) * num_elements, NULL, NULL); if (!streams[1]) { log_error("clCreateBuffer failed\n"); return -1; } p = input_ptr[0]; d = init_genrand( gRandomSeed ); for (i=0; i