// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include "bench/utils.h" #include #include #include struct ComputeErrorContext { const float* input; const float* output_m; const float* output_e; float* error; }; static void ComputeError( struct ComputeErrorContext* context, size_t start, size_t range) { const float* input = context->input; const float* output_m = context->output_m; const float* output_e = context->output_e; float* error = context->error; const double inv_ulp = 0x1.0p+24; for (size_t i = start; i < start + range; i++) { const double output_ref = std::exp(double(input[i])); int output_ref_e; const double output_ref_m = std::frexp(output_ref, &output_ref_e); const double ulp_error = std::abs(output_ref_m - std::ldexp(double(output_m[i]), int(output_e[i]) - output_ref_e)) * inv_ulp; error[i] = float(ulp_error); } } static void ExtExpError(benchmark::State& state, xnn_f32_ext_unary_math_function extexp, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (!cpuinfo_initialize()) { state.SkipWithError("failed cpuinfo init"); return; } if (isa_check && !isa_check(state)) { return; } // The smallest x for which exp(x) (double-precision) is normal (-0x1.6232BCp9f). const uint32_t min_input = 0xC431195E; // The largest x for which exp(x) (double-precision) is finite (0x1.62E42Ep9). const uint32_t max_input = 0x44317217; // Number of elements in one block of inputs/outputs. // Combining multiple elements in a block reduce function call overhead. const size_t block_size = 16384; // Number of elements in one parallelization tile. Worker threads process this many elements in each task. const size_t tile_size = 64; uint32_t num_threads = cpuinfo_get_cores_count(); #if XNN_ARCH_ARM || XNN_ARCH_ARM64 // Use all cores except for the least performant cluster if (cpuinfo_get_clusters_count() > 1) { num_threads -= cpuinfo_get_cluster(cpuinfo_get_clusters_count() - 1)->core_count; } #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 std::unique_ptr threadpool( pthreadpool_create(num_threads), pthreadpool_destroy); std::vector> x(block_size); std::vector> m(block_size); std::vector> e(block_size); std::vector ulp_error(block_size); float max_ulp_error = 0.0f; ComputeErrorContext context; context.input = x.data(); context.output_m = m.data(); context.output_e = e.data(); context.error = ulp_error.data(); for (auto _ : state) { for (uint32_t n = min_input; int32_t(n) < 0; n -= block_size) { for (uint32_t i = 0; i < block_size; i++) { x[i] = fp32_from_bits(std::max(n - i, 0x80000000)); } std::fill(m.begin(), m.end(), std::nanf("")); std::fill(e.begin(), e.end(), std::nanf("")); extexp(block_size * sizeof(float), x.data(), m.data(), e.data()); pthreadpool_parallelize_1d_tile_1d( threadpool.get(), reinterpret_cast(ComputeError), static_cast(&context), block_size, tile_size, 0 /* flags */); max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, static_cast(std::max)); } for (uint32_t n = 0; n < max_input; n += block_size) { for (uint32_t i = 0; i < block_size; i++) { x[i] = fp32_from_bits(std::min(n + i, max_input)); } std::fill(m.begin(), m.end(), std::nanf("")); std::fill(e.begin(), e.end(), std::nanf("")); extexp(block_size * sizeof(float), x.data(), m.data(), e.data()); pthreadpool_parallelize_1d_tile_1d( threadpool.get(), reinterpret_cast(ComputeError), static_cast(&context), block_size, tile_size, 0 /* flags */); max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, static_cast(std::max)); } } state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error); } #if XNN_ARCH_X86 || XNN_ARCH_X86_64 BENCHMARK_CAPTURE(ExtExpError, avx512f_p5, xnn_math_f32_extexp__avx512f_p5, benchmark::utils::CheckAVX512F) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(ExtExpError, avx2_p5, xnn_math_f32_extexp__avx2_p5, benchmark::utils::CheckAVX2) ->Unit(benchmark::kMillisecond) ->Iterations(1); #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif