// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include class ConvolutionOperatorTester { public: inline ConvolutionOperatorTester& padding_tf_same(bool padding_same) { if (padding_same) { assert(padding_top() == 0); assert(padding_left() == 0); assert(padding_bottom() == 0); assert(padding_right() == 0); } this->padding_tf_same_ = padding_same; return *this; } inline bool padding_tf_same() const { return this->padding_tf_same_; } inline ConvolutionOperatorTester& padding(uint32_t padding) { assert(!padding_tf_same()); this->padding_top_ = padding; this->padding_right_ = padding; this->padding_bottom_ = padding; this->padding_left_ = padding; return *this; } inline ConvolutionOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_right_ = padding_width; this->padding_bottom_ = padding_height; this->padding_left_ = padding_width; return *this; } inline ConvolutionOperatorTester& padding_height(uint32_t padding_height) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_bottom_ = padding_height; return *this; } inline ConvolutionOperatorTester& padding_width(uint32_t padding_width) { assert(!padding_tf_same()); this->padding_right_ = padding_width; this->padding_left_ = padding_width; return *this; } inline ConvolutionOperatorTester& padding_top(uint32_t padding_top) { assert(!padding_tf_same()); this->padding_top_ = padding_top; return *this; } inline uint32_t padding_top() const { if (padding_tf_same()) { const uint32_t total_padding_height = (output_height() - 1) * subsampling_height() + dilated_kernel_height() - input_height(); return total_padding_height / 2; } else { return this->padding_top_; } } inline ConvolutionOperatorTester& padding_left(uint32_t padding_left) { assert(!padding_tf_same()); this->padding_left_ = padding_left; return *this; } inline uint32_t padding_left() const { if (padding_tf_same()) { const uint32_t total_padding_width = (output_width() - 1) * subsampling_width() + dilated_kernel_width() - input_width(); return total_padding_width / 2; } else { return this->padding_left_; } } inline ConvolutionOperatorTester& padding_bottom(uint32_t padding_bottom) { assert(!padding_tf_same()); this->padding_bottom_ = padding_bottom; return *this; } inline uint32_t padding_bottom() const { if (padding_tf_same()) { const uint32_t total_padding_height = (output_height() - 1) * subsampling_height() + dilated_kernel_height() - input_height(); return total_padding_height - total_padding_height / 2; } else { return this->padding_bottom_; } } inline ConvolutionOperatorTester& padding_right(uint32_t padding_right) { assert(!padding_tf_same()); this->padding_right_ = padding_right; return *this; } inline uint32_t padding_right() const { if (padding_tf_same()) { const uint32_t total_padding_width = (output_width() - 1) * subsampling_width() + dilated_kernel_width() - input_width(); return total_padding_width - total_padding_width / 2; } else { return this->padding_right_; } } inline ConvolutionOperatorTester& input_size(uint32_t input_height, uint32_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline ConvolutionOperatorTester& input_height(uint32_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline uint32_t input_height() const { return this->input_height_; } inline ConvolutionOperatorTester& input_width(uint32_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline uint32_t input_width() const { return this->input_width_; } inline ConvolutionOperatorTester& groups(uint32_t groups) { assert(groups >= 1); this->groups_ = groups; return *this; } inline uint32_t groups() const { return this->groups_; } inline ConvolutionOperatorTester& group_input_channels(size_t group_input_channels) { assert(group_input_channels >= 1); this->group_input_channels_ = group_input_channels; return *this; } inline size_t group_input_channels() const { return this->group_input_channels_; } inline ConvolutionOperatorTester& group_output_channels(size_t group_output_channels) { assert(group_output_channels >= 1); this->group_output_channels_ = group_output_channels; return *this; } inline size_t group_output_channels() const { return this->group_output_channels_; } inline ConvolutionOperatorTester& batch_size(size_t batch_size) { assert(batch_size >= 1); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline ConvolutionOperatorTester& kernel_size(uint32_t kernel_size) { assert(kernel_size >= 1); this->kernel_height_ = kernel_size; this->kernel_width_ = kernel_size; return *this; } inline ConvolutionOperatorTester& kernel_size(uint32_t kernel_height, uint32_t kernel_width) { assert(kernel_height >= 1); assert(kernel_width >= 1); this->kernel_height_ = kernel_height; this->kernel_width_ = kernel_width; return *this; } inline ConvolutionOperatorTester& kernel_height(uint32_t kernel_height) { assert(kernel_height >= 1); this->kernel_height_ = kernel_height; return *this; } inline uint32_t kernel_height() const { return this->kernel_height_; } inline ConvolutionOperatorTester& kernel_width(uint32_t kernel_width) { assert(kernel_width >= 1); this->kernel_width_ = kernel_width; return *this; } inline uint32_t kernel_width() const { return this->kernel_width_; } inline ConvolutionOperatorTester& dilation(uint32_t dilation) { assert(dilation >= 1); this->dilation_height_ = dilation; this->dilation_width_ = dilation; return *this; } inline ConvolutionOperatorTester& dilation(uint32_t dilation_height, uint32_t dilation_width) { assert(dilation_height >= 1); assert(dilation_width >= 1); this->dilation_height_ = dilation_height; this->dilation_width_ = dilation_width; return *this; } inline ConvolutionOperatorTester& dilation_height(uint32_t dilation_height) { assert(dilation_height >= 1); this->dilation_height_ = dilation_height; return *this; } inline uint32_t dilation_height() const { return this->dilation_height_; } inline ConvolutionOperatorTester& dilation_width(uint32_t dilation_width) { assert(dilation_width >= 1); this->dilation_width_ = dilation_width; return *this; } inline uint32_t dilation_width() const { return this->dilation_width_; } inline ConvolutionOperatorTester& subsampling(uint32_t subsampling) { assert(subsampling >= 1); this->subsampling_height_ = subsampling; this->subsampling_width_ = subsampling; return *this; } inline ConvolutionOperatorTester& subsampling(uint32_t subsampling_height, uint32_t subsampling_width) { assert(subsampling_height >= 1); assert(subsampling_width >= 1); this->subsampling_height_ = subsampling_height; this->subsampling_width_ = subsampling_width; return *this; } inline ConvolutionOperatorTester& subsampling_height(uint32_t subsampling_height) { assert(subsampling_height >= 1); this->subsampling_height_ = subsampling_height; return *this; } inline uint32_t subsampling_height() const { return this->subsampling_height_; } inline ConvolutionOperatorTester& subsampling_width(uint32_t subsampling_width) { assert(subsampling_width >= 1); this->subsampling_width_ = subsampling_width; return *this; } inline uint32_t subsampling_width() const { return this->subsampling_width_; } inline ConvolutionOperatorTester& input_channel_stride(size_t input_channel_stride) { assert(input_channel_stride >= 1); this->input_channel_stride_ = input_channel_stride; return *this; } inline size_t input_channel_stride() const { if (this->input_channel_stride_ == 0) { return group_input_channels() * groups(); } else { assert(this->input_channel_stride_ >= group_input_channels() * groups()); return this->input_channel_stride_; } } inline ConvolutionOperatorTester& output_channel_stride(size_t output_channel_stride) { assert(output_channel_stride >= 1); this->output_channel_stride_ = output_channel_stride; return *this; } inline size_t output_channel_stride() const { if (this->output_channel_stride_ == 0) { return group_output_channels() * groups(); } else { assert(this->output_channel_stride_ >= group_output_channels() * groups()); return this->output_channel_stride_; } } inline uint32_t dilated_kernel_height() const { return (kernel_height() - 1) * dilation_height() + 1; } inline uint32_t dilated_kernel_width() const { return (kernel_width() - 1) * dilation_width() + 1; } inline size_t output_height() const { if (padding_tf_same()) { return (input_height() + subsampling_height() - 1) / subsampling_height(); } else { const size_t padded_input_height = padding_top() + input_height() + padding_bottom(); if (padded_input_height <= dilated_kernel_height()) { return 1; } else { return (padded_input_height - dilated_kernel_height()) / subsampling_height() + 1; } } } inline size_t output_width() const { if (padding_tf_same()) { return (input_width() + subsampling_width() - 1) / subsampling_width(); } else { const size_t padded_input_width = padding_left() + input_width() + padding_right(); if (padded_input_width <= dilated_kernel_width()) { return 1; } else { return (padded_input_width - dilated_kernel_width()) / subsampling_width() + 1; } } } inline ConvolutionOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) { assert(next_input_height >= 1); assert(next_input_width >= 1); this->next_input_height_ = next_input_height; this->next_input_width_ = next_input_width; return *this; } inline ConvolutionOperatorTester& next_input_height(uint32_t next_input_height) { assert(next_input_height >= 1); this->next_input_height_ = next_input_height; return *this; } inline uint32_t next_input_height() const { if (this->next_input_height_ == 0) { return input_height(); } else { return this->next_input_height_; } } inline ConvolutionOperatorTester& next_input_width(uint32_t next_input_width) { assert(next_input_width >= 1); this->next_input_width_ = next_input_width; return *this; } inline uint32_t next_input_width() const { if (this->next_input_width_ == 0) { return input_width(); } else { return this->next_input_width_; } } inline size_t next_output_height() const { const size_t padded_input_height = padding_top() + next_input_height() + padding_bottom(); if (padded_input_height <= dilated_kernel_height()) { return 1; } else { return (padded_input_height - dilated_kernel_height()) / subsampling_height() + 1; } } inline size_t next_output_width() const { const size_t padded_input_width = padding_left() + next_input_width() + padding_right(); if (padded_input_width <= dilated_kernel_width()) { return 1; } else { return (padded_input_width - dilated_kernel_width()) / subsampling_width() + 1; } } inline ConvolutionOperatorTester& next_batch_size(size_t next_batch_size) { assert(next_batch_size >= 1); this->next_batch_size_ = next_batch_size; return *this; } inline size_t next_batch_size() const { if (this->next_batch_size_ == 0) { return batch_size(); } else { return this->next_batch_size_; } } inline ConvolutionOperatorTester& sparsity(float sparsity) { this->sparsity_ = sparsity; return *this; } inline float sparsity() const { return this->sparsity_; } inline ConvolutionOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline ConvolutionOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline ConvolutionOperatorTester& force_nhwc_input(bool force_nhwc_input) { this->force_nhwc_input_ = force_nhwc_input; return *this; } inline bool force_nhwc_input() const { return this->force_nhwc_input_; } inline ConvolutionOperatorTester& depthwise_layout(bool depthwise_layout) { this->depthwise_layout_ = depthwise_layout; return *this; } inline bool depthwise_layout() const { return this->depthwise_layout_; } inline ConvolutionOperatorTester& has_bias(bool has_bias) { this->has_bias_ = has_bias; return *this; } inline bool has_bias() const { return this->has_bias_; } inline ConvolutionOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestNHWCxQS8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()) + 8); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels())); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); const int8_t input_zero_point = -1; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(i8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } if (depthwise_layout()) { ASSERT_EQ(group_input_channels(), 1); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g]) - int32_t(input_zero_point)) * int32_t(kernel[((ky * kernel_width() + kx) * groups() + g) * group_output_channels() + oc]); } } } } } } } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const int8_t output_zero_point = int8_t(std::max(std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point); }); // Create, setup, run, and destroy Convolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_qs8( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), input_zero_point, 1.0f /* input scale */, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), (depthwise_layout() ? XNN_FLAG_DEPTHWISE_CONVOLUTION : 0) | (padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0), &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qs8( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestNHWCxQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()) + 8); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels())); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); const uint8_t input_zero_point = 127; const uint8_t kernel_zero_point = 127; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } if (depthwise_layout()) { ASSERT_EQ(group_input_channels(), 1); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g]) - int32_t(input_zero_point)) * (int32_t(kernel[((ky * kernel_width() + kx) * groups() + g) * group_output_channels() + oc]) - int32_t(kernel_zero_point)); } } } } } } } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Create, setup, run, and destroy Convolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_qu8( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), input_zero_point, 1.0f /* input scale */, kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, qmin(), qmax(), (depthwise_layout() ? XNN_FLAG_DEPTHWISE_CONVOLUTION : 0) | (padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0), &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qu8( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestNHWCxF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels())); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels())); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } if (depthwise_layout()) { ASSERT_EQ(group_input_channels(), 1); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g] * kernel[((ky * kernel_width() + kx) * groups() + g) * group_output_channels() + oc]; } } } } } } } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Convolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_f32( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, (depthwise_layout() ? XNN_FLAG_DEPTHWISE_CONVOLUTION : 0) | (padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0), &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f32( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestNHWCxF16() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint16_t) + batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels())); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels())); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f16rng)); std::generate(bias.begin(), bias.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = fp16_ieee_to_fp32_value(bias[g * group_output_channels() + oc]); } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } if (depthwise_layout()) { ASSERT_EQ(group_input_channels(), 1); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g]) * fp16_ieee_to_fp32_value(kernel[((ky * kernel_width() + kx) * groups() + g) * group_output_channels() + oc]); } } } } } } } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) * fp16_ieee_to_fp32_value(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); const float output_min = scaled_min == scaled_max ? -std::numeric_limits::infinity() : scaled_min; const float output_max = scaled_min == scaled_max ? +std::numeric_limits::infinity() : scaled_max; // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Convolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_f16( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, (depthwise_layout() ? XNN_FLAG_DEPTHWISE_CONVOLUTION : 0) | (padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0), &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f16( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { // ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_min) // << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; // ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_max) // << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), std::max(1.0e-4f, std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]) * 1.0e-2f)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestNCHWxF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); auto prng = std::bind(std::uniform_real_distribution(), rng); std::vector input(2 * XNN_EXTRA_BYTES / sizeof(float) + ((batch_size() - 1) * input_channel_stride() + groups() * group_input_channels()) * input_height() * input_width()); std::vector kernel( groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output( ((batch_size() - 1) * output_channel_stride() + groups() * group_output_channels()) * output_height() * output_width()); std::vector output_ref(batch_size() * groups() * group_output_channels() * output_height() * output_width()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); for (float& k : kernel) { if (prng() <= sparsity()) { k = 0.0f; } } std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * groups() + g) * group_output_channels() + oc) * output_height() + oy) * output_width() + ox] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } if (force_nhwc_input()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * groups() + g) * group_output_channels() + oc) * output_height() + oy) * output_width() + ox] += input[((((i * input_height() + iy) * input_width() + ix) * groups() + g) * group_input_channels() + ic)] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } } else if (depthwise_layout()) { ASSERT_EQ(group_input_channels(), 1); for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * groups() + g) * group_output_channels() + oc) * output_height() + oy) * output_width() + ox] += input[((i * input_channel_stride() + g) * input_height() + iy) * input_width() + ix] * kernel[((ky * kernel_width() + kx) * groups() + g) * group_output_channels() + oc]; } } } } } } } } } } else { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * groups() + g) * group_output_channels() + oc) * output_height() + oy) * output_width() + ox] += input[((i * input_channel_stride() + g * group_input_channels() + ic) * input_height() + iy) * input_width() + ix] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = qmin() == 0 ? -std::numeric_limits::infinity() : accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = qmax() == 255 ? std::numeric_limits::infinity() : accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Convolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nchw_f32( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, (depthwise_layout() ? XNN_FLAG_DEPTHWISE_CONVOLUTION : 0) | (force_nhwc_input() ? XNN_FLAG_INPUT_NHWC : 0), &convolution_op); if (status == xnn_status_unsupported_parameter) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nchw_f32( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * output_channel_stride() + g * group_output_channels() + c) * output_height() + y) * output_width() + x], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c << ", image = " << i; ASSERT_LE(output[((i * output_channel_stride() + g * group_output_channels() + c) * output_height() + y) * output_width() + x], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c << ", image = " << i; ASSERT_NEAR( output_ref[(((i * groups() + g) * group_output_channels() + c) * output_height() + y) * output_width() + x], output[((i * output_channel_stride() + g * group_output_channels() + c) * output_height() + y) * output_width() + x], 1.0e-4 * std::abs(output_ref[(((i * groups() + g) * group_output_channels() + c) * output_height() + y) * output_width() + x])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c << ", image = " << i; } } } } } } } void TestSetupNHWCxQS8() const { ASSERT_FALSE(depthwise_layout()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto i8rng = std::bind( std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(int8_t) + std::max( batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()), next_batch_size() * ((next_input_height() * next_input_width() - 1) * input_channel_stride() + groups() * group_input_channels())) + 8); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels()), next_batch_size() * ((next_output_height() * next_output_width() - 1) * output_channel_stride() + groups() * group_output_channels()))); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_accumulators(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); const int8_t input_zero_point = -1; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(i8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(i8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const int8_t output_zero_point = int8_t(std::max(std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point); }); // Create, setup, and run Convolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_qs8( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), input_zero_point, 1.0f /* input scale */, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), 0, &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qs8( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(i8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results for the second run, including renormalization. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(next_accumulators.begin(), next_accumulators.end(), 0); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } std::transform(next_accumulators.cbegin(), next_accumulators.cend(), next_output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax() - 0x80) - output_zero_point), double(qmin() - 0x80) - output_zero_point); }); // Setup and run Convolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qs8( convolution_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin() - 0x80)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestSetupNHWCxQU8() const { ASSERT_FALSE(depthwise_layout()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max( batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()), next_batch_size() * ((next_input_height() * next_input_width() - 1) * input_channel_stride() + groups() * group_input_channels())) + 8); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels()), next_batch_size() * ((next_output_height() * next_output_width() - 1) * output_channel_stride() + groups() * group_output_channels()))); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_accumulators(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); const uint8_t input_zero_point = 127; const uint8_t kernel_zero_point = 127; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Create, setup, and run Convolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_qu8( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), input_zero_point, 1.0f /* input scale */, kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, qmin(), qmax(), 0, &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qu8( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results for the second run, including renormalization. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(next_accumulators.begin(), next_accumulators.end(), 0); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } std::transform(next_accumulators.cbegin(), next_accumulators.cend(), next_output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Setup and run Convolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_qu8( convolution_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestSetupNHWCxF16() const { ASSERT_FALSE(depthwise_layout()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.0f, 1.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint16_t) + std::max( batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()), next_batch_size() * ((next_input_height() * next_input_width() - 1) * input_channel_stride() + groups() * group_input_channels()))); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels()), next_batch_size() * ((next_output_height() * next_output_width() - 1) * output_channel_stride() + groups() * group_output_channels()))); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f16rng)); std::generate(bias.begin(), bias.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = fp16_ieee_to_fp32_value(bias[g * group_output_channels() + oc]); } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += fp16_ieee_to_fp32_value(input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) * fp16_ieee_to_fp32_value(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); const float output_min = scaled_min == scaled_max ? -std::numeric_limits::infinity() : scaled_min; const float output_max = scaled_min == scaled_max ? +std::numeric_limits::infinity() : scaled_max; for (float& output_value : output_ref) { output_value = std::min(std::max(output_value, output_min), output_max); } // Create, setup, and run Convolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_f16( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, 0, &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f16( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], fp16_ieee_to_fp32_value(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), std::max(1.0e-4f, std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c]) * 1.0e-2f)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results for the second run, including clamping. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = fp16_ieee_to_fp32_value(bias[g * group_output_channels() + oc]); } } } } } } else { std::fill(next_output_ref.begin(), next_output_ref.end(), 0.0f); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += fp16_ieee_to_fp32_value(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic]) * fp16_ieee_to_fp32_value(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]); } } } } } } } } } } for (float& value : next_output_ref) { value = std::max(std::min(value, output_max), output_min); } // Setup and run Convolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f16( convolution_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], fp16_ieee_to_fp32_value(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c]), std::max(1.0e-4f, std::abs(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c]) * 1.0e-2f)) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestSetupNHWCxF32() const { ASSERT_FALSE(depthwise_layout()); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + std::max( batch_size() * ((input_height() * input_width() - 1) * input_channel_stride() + groups() * group_input_channels()), next_batch_size() * ((next_input_height() * next_input_width() - 1) * input_channel_stride() + groups() * group_input_channels()))); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( batch_size() * ((output_height() * output_width() - 1) * output_channel_stride() + groups() * group_output_channels()), next_batch_size() * ((next_output_height() * next_output_width() - 1) * output_channel_stride() + groups() * group_output_channels()))); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * input_height() + iy) * input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, and run Convolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t convolution_op = nullptr; xnn_status status = xnn_create_convolution2d_nhwc_f32( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), subsampling_height(), subsampling_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_channel_stride(), output_channel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, 0, &convolution_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, convolution_op); // Smart pointer to automatically delete convolution_op. std::unique_ptr auto_convolution_op(convolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f32( convolution_op, batch_size(), input_height(), input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * output_height() + y) * output_width() + x) * output_channel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results for the second run, including clamping. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(next_output_ref.begin(), next_output_ref.end(), 0.0f); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t iy = oy * subsampling_height() + ky * dilation_height() - padding_top(); if (iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t ix = ox * subsampling_width() + kx * dilation_width() - padding_left(); if (ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * next_input_height() + iy) * next_input_width() + ix) * input_channel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } for (float& value : next_output_ref) { value = std::max(std::min(value, output_max), output_min); } // Setup and run Convolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_convolution2d_nhwc_f32( convolution_op, next_batch_size(), next_input_height(), next_input_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(convolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * next_output_height() + y) * next_output_width() + x) * output_channel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } private: uint32_t padding_top_{0}; uint32_t padding_right_{0}; uint32_t padding_bottom_{0}; uint32_t padding_left_{0}; bool padding_tf_same_{false}; size_t input_height_{1}; size_t input_width_{1}; uint32_t groups_{1}; size_t group_input_channels_{1}; size_t input_channel_stride_{0}; size_t group_output_channels_{1}; size_t output_channel_stride_{0}; size_t batch_size_{1}; uint32_t kernel_height_{1}; uint32_t kernel_width_{1}; uint32_t dilation_height_{1}; uint32_t dilation_width_{1}; uint32_t subsampling_height_{1}; uint32_t subsampling_width_{1}; size_t next_input_height_{0}; size_t next_input_width_{0}; size_t next_batch_size_{0}; float sparsity_{0.0f}; uint8_t qmin_{0}; uint8_t qmax_{255}; bool depthwise_layout_{false}; bool force_nhwc_input_{false}; bool has_bias_{true}; size_t iterations_{1}; };