// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include class PReLUMicrokernelTester { public: inline PReLUMicrokernelTester& rows(size_t rows) { assert(rows != 0); this->rows_ = rows; return *this; } inline size_t rows() const { return this->rows_; } inline PReLUMicrokernelTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline PReLUMicrokernelTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return channels(); } else { assert(this->input_stride_ >= channels()); return this->input_stride_; } } inline PReLUMicrokernelTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return channels(); } else { assert(this->output_stride_ >= channels()); return this->output_stride_; } } inline PReLUMicrokernelTester& inplace(bool inplace) { this->inplace_ = inplace; return *this; } inline bool inplace() const { return this->inplace_; } inline PReLUMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f16_prelu_ukernel_function prelu) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), rng); auto f32wrng = std::bind(std::uniform_real_distribution(0.25f, 0.75f), rng); auto f16irng = std::bind(fp16_ieee_from_fp32_value, f32irng); auto f16wrng = std::bind(fp16_ieee_from_fp32_value, f32wrng); std::vector x(channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector> w(channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y(channels() + (rows() - 1) * output_stride() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector y_ref(channels() * rows()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f16irng)); std::generate(w.begin(), w.end(), std::ref(f16wrng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f16irng)); } else { std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); } const uint16_t* x_data = inplace() ? y.data() : x.data(); // Compute reference results, without clamping. for (size_t n = 0; n < rows(); n++) { for (size_t c = 0; c < channels(); c++) { const float x_value = fp16_ieee_to_fp32_value(x_data[n * input_stride() + c]); y_ref[n * channels() + c] = std::signbit(x_value) ? fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(x_value * fp16_ieee_to_fp32_value(w[c]))) : x_value; } } // Call optimized micro-kernel. prelu(rows(), channels() * sizeof(uint16_t), x_data, input_stride() * sizeof(uint16_t), w.data(), y.data(), output_stride() * sizeof(uint16_t)); // Verify results. for (size_t n = 0; n < rows(); n++) { for (size_t c = 0; c < channels(); c++) { ASSERT_EQ(fp16_ieee_to_fp32_value(y[n * output_stride() + c]), y_ref[n * channels() + c]) << "at row " << n << " / " << rows() << ", channel " << c << " / " << channels(); } } } } void Test(xnn_f32_prelu_ukernel_function prelu) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32irng = std::bind(std::uniform_real_distribution(-1.0f, 1.0f), rng); auto f32wrng = std::bind(std::uniform_real_distribution(0.25f, 0.75f), rng); std::vector x(channels() + (rows() - 1) * input_stride() + XNN_EXTRA_BYTES / sizeof(float)); std::vector> w(channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y(channels() + (rows() - 1) * output_stride() + XNN_EXTRA_BYTES / sizeof(float)); std::vector y_ref(channels() * rows()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32irng)); std::generate(w.begin(), w.end(), std::ref(f32wrng)); if (inplace()) { std::generate(y.begin(), y.end(), std::ref(f32irng)); } else { std::fill(y.begin(), y.end(), nanf("")); } const float* x_data = inplace() ? y.data() : x.data(); // Compute reference results, without clamping. for (size_t n = 0; n < rows(); n++) { for (size_t c = 0; c < channels(); c++) { const float x_value = x_data[n * input_stride() + c]; y_ref[n * channels() + c] = std::signbit(x_value) ? x_value * w[c] : x_value; } } // Call optimized micro-kernel. prelu(rows(), channels() * sizeof(float), x_data, input_stride() * sizeof(float), w.data(), y.data(), output_stride() * sizeof(float)); // Verify results. for (size_t n = 0; n < rows(); n++) { for (size_t c = 0; c < channels(); c++) { ASSERT_EQ(y[n * output_stride() + c], y_ref[n * channels() + c]) << "at row " << n << " / " << rows() << ", channel " << c << " / " << channels(); } } } } private: size_t rows_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; bool inplace_{false}; size_t iterations_{15}; };