// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class RAddExpMinusMaxMicrokernelTester { public: inline RAddExpMinusMaxMicrokernelTester& elements(size_t elements) { assert(elements != 0); this->elements_ = elements; return *this; } inline size_t elements() const { return this->elements_; } inline RAddExpMinusMaxMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_f32_raddexpminusmax_ukernel_function raddexpminusmax) const { std::random_device random_device; auto rng = std::mt19937(random_device()); // Choose such range that expf(x[i]) overflows, but expf(x[i] - x_max) doesn't. // However, the range is still narrow enough that double-precision exp doesn't overflow. auto f32rng = std::bind(std::uniform_real_distribution(90.0f, 100.0f), rng); std::vector x(elements() + XNN_EXTRA_BYTES / sizeof(float)); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(f32rng)); // Compute reference results. double sum_ref = 0.0f; const float x_max = *std::max_element(x.begin(), x.begin() + elements()); for (size_t i = 0; i < elements(); i++) { sum_ref += exp(x[i] - x_max); } // Call optimized micro-kernel. float sum = std::nanf(""); raddexpminusmax(elements() * sizeof(float), x.data(), &sum, x_max); // Verify results. ASSERT_NEAR(sum_ref, double(sum), std::abs(sum_ref) * 1.0e-6) << "elements = " << elements() << ", x_max = " << x_max; } } private: size_t elements_{1}; size_t iterations_{15}; };