#include #include #include #include #include #include #include #include #include #include #ifndef __aarch64__ #error This program is for 64-bit ARM only. #endif struct PerfEvent { perf_event_attr pe; int fd = -1; PerfEvent(std::uint32_t type, std::uint64_t config) { memset(&pe, 0, sizeof(pe)); pe.size = sizeof(pe); pe.type = type; pe.config = config; pe.disabled = 1; pe.exclude_kernel = 1; pe.exclude_hv = 1; fd = syscall(__NR_perf_event_open, &pe, 0, -1, -1, 0); if (fd == -1) { fprintf(stderr, "perf_event_open failed for config 0x%lx\n", config); abort(); } } void Start() { ioctl(fd, PERF_EVENT_IOC_RESET, 0); ioctl(fd, PERF_EVENT_IOC_ENABLE, 0); } std::int64_t Stop() { ioctl(fd, PERF_EVENT_IOC_DISABLE, 0); std::int64_t count = 0; read(fd, &count, sizeof(count)); return count; } ~PerfEvent() { close(fd); } }; struct ArmPmuEvent : PerfEvent { static constexpr std::uint16_t L1I_CACHE_REFILL = 0x01; static constexpr std::uint16_t L1I_TLB_REFILL = 0x02; static constexpr std::uint16_t L1D_CACHE_REFILL = 0x03; static constexpr std::uint16_t L1D_CACHE = 0x04; static constexpr std::uint16_t L1D_TLB_REFILL = 0x05; static constexpr std::uint16_t LD_RETIRED = 0x06; static constexpr std::uint16_t ST_RETIRED = 0x07; static constexpr std::uint16_t INST_RETIRED = 0x08; static constexpr std::uint16_t EXC_TAKEN = 0x09; static constexpr std::uint16_t EXC_RETURN = 0x0A; static constexpr std::uint16_t CID_WRITE_RETIRED = 0x0B; static constexpr std::uint16_t PC_WRITE_RETIRED = 0x0C; static constexpr std::uint16_t BR_IMMED_RETIRED = 0x0D; static constexpr std::uint16_t BR_RETURN_RETIRED = 0x0E; static constexpr std::uint16_t UNALIGNED_LDST_RETIRED = 0x0F; static constexpr std::uint16_t BR_MIS_PRED = 0x10; static constexpr std::uint16_t CPU_CYCLES = 0x11; static constexpr std::uint16_t BR_PRED = 0x12; static constexpr std::uint16_t MEM_ACCESS = 0x13; static constexpr std::uint16_t L1I_CACHE = 0x14; static constexpr std::uint16_t L1D_CACHE_WB = 0x15; static constexpr std::uint16_t L2D_CACHE = 0x16; static constexpr std::uint16_t L2D_CACHE_REFILL = 0x17; static constexpr std::uint16_t L2D_CACHE_WB = 0x18; static constexpr std::uint16_t BUS_ACCESS = 0x19; static constexpr std::uint16_t MEMORY_ERROR = 0x1A; static constexpr std::uint16_t INST_SPEC = 0x1B; static constexpr std::uint16_t TTBR_WRITE_RETIRED = 0x1C; static constexpr std::uint16_t BUS_CYCLES = 0x1D; static constexpr std::uint16_t CHAIN = 0x1E; static constexpr std::uint16_t L1D_CACHE_ALLOCATE = 0x1F; static constexpr std::uint16_t L2D_CACHE_ALLOCATE = 0x20; static constexpr std::uint16_t BR_RETIRED = 0x21; static constexpr std::uint16_t BR_MIS_PRED_RETIRED = 0x22; static constexpr std::uint16_t STALL_FRONTEND = 0x23; static constexpr std::uint16_t STALL_BACKEND = 0x24; static constexpr std::uint16_t L1D_TLB = 0x25; static constexpr std::uint16_t L1I_TLB = 0x26; static constexpr std::uint16_t L2I_CACHE = 0x27; static constexpr std::uint16_t L2I_CACHE_REFILL = 0x28; static constexpr std::uint16_t L3D_CACHE_ALLOCATE = 0x29; static constexpr std::uint16_t L3D_CACHE_REFILL = 0x2A; static constexpr std::uint16_t L3D_CACHE = 0x2B; static constexpr std::uint16_t L3D_CACHE_WB = 0x2C; static constexpr std::uint16_t L2D_TLB_REFILL = 0x2D; static constexpr std::uint16_t L2I_TLB_REFILL = 0x2E; static constexpr std::uint16_t L2D_TLB = 0x2F; static constexpr std::uint16_t L2I_TLB = 0x30; static constexpr std::uint16_t LL_CACHE = 0x32; static constexpr std::uint16_t LL_CACHE_MISS = 0x33; static constexpr std::uint16_t DTLB_WALK = 0x34; static constexpr std::uint16_t LL_CACHE_RD = 0x36; static constexpr std::uint16_t LL_CACHE_MISS_RD = 0x37; static constexpr std::uint16_t L1D_CACHE_RD = 0x40; static constexpr std::uint16_t L1D_CACHE_REFILL_RD = 0x42; static constexpr std::uint16_t L1D_TLB_REFILL_RD = 0x4C; static constexpr std::uint16_t L1D_TLB_RD = 0x4E; static constexpr std::uint16_t L2D_CACHE_RD = 0x50; static constexpr std::uint16_t L2D_CACHE_REFILL_RD = 0x52; static constexpr std::uint16_t BUS_ACCESS_RD = 0x60; static constexpr std::uint16_t MEM_ACCESS_RD = 0x66; static constexpr std::uint16_t L3D_CACHE_RD = 0xA0; static constexpr std::uint16_t L3D_CACHE_REFILL_RD = 0xA2; ArmPmuEvent(std::uint16_t number) : PerfEvent(PERF_TYPE_RAW, number) {} }; struct CacheCounts { int ld_retired = 0; int mem_access = 0; int ll_cache = 0; int ll_cache_miss = 0; int l1d_cache = 0; int l1d_cache_refill = 0; int l2d_cache = 0; int l2d_cache_refill = 0; int l3d_cache = 0; int l3d_cache_refill = 0; }; void PrintCacheCounts(const CacheCounts& cache_counts) { printf("ld_retired = %d\n", cache_counts.ld_retired); printf("mem_access = %d\n", cache_counts.mem_access); printf("ll_cache = %d\n", cache_counts.ll_cache); printf("ll_cache_miss = %d\n", cache_counts.ll_cache_miss); printf("l1d_cache = %d\n", cache_counts.l1d_cache); printf("l1d_cache_refill = %d\n", cache_counts.l1d_cache_refill); printf("l2d_cache = %d\n", cache_counts.l2d_cache); printf("l2d_cache_refill = %d\n", cache_counts.l2d_cache_refill); printf("l3d_cache = %d\n", cache_counts.l3d_cache); printf("l3d_cache_refill = %d\n", cache_counts.l3d_cache_refill); } void Workload(int accesses, int size, std::uint8_t* buf) { // The main reason to do this in assembly is an attempt to make sense // of instruction count counters, such as LD_RETIRED. // Also, if we did this in C++, we would need to be watchful of the compiler // optimizing away operations whose result isn't consumed. // // Note that TWO separate tricks are needed here to prevent Cortex-A76 // speculative execution om prefetching data from future loop iterations: // 1. A data-dependency whereby the pointers being dereferenced at the // next loop iteration depend on values loaded at the current iteration. // That is the role of 'dummy'. // 2. A pseudo-random sequence. This is the role of register w0, // where we implement a simple xorshift pseudorandom generator. // BOTH of these tricks are needed: if we disable just one of them, // Cortex-A76 successfully speculates some addresses, resulting in different // L3 / DRAM hit percentages on large sizes. std::uint64_t dummy = 123456789; asm volatile( // w0 := xorshift RNG state. Must be nonzero. "mov w0, #1\n" "1:\n" // xorshift RNG iteration: update w0 with the next pseudorandom value // in [1 .. 2^32-1]. // This pseudorandomness is crucial to preventing speculative execution // on Cortex-A76 from prefetching data from future loop iterations. "eor w0, w0, w0, lsl #13\n" "eor w0, w0, w0, lsr #17\n" "eor w0, w0, w0, lsl #5\n" // w1 := size - 1 = size mask (size is required to be power-of-two). "sub w1, %w[size], #1\n" // w2 := (pseudorandom value w0) xor (data-dependent sum). "eor w2, w0, %w[dummy]\n" // w1 := w2 modulo size "and w1, w2, w1\n" // align w1 "and w1, w1, #-64\n" // load at offset w1, again using x1 as destination. "ldr x1, [%[buf], w1, uxtw]\n" // Update our dummy so it depends on the value we have just loaded. // This data-dependency is key to preventing speculative execution on // Cortex-A76 from prefetching data from future loop iterations. "add %[dummy], %[dummy], w1, uxtw\n" // loop back. "subs %w[accesses], %w[accesses], #1\n" "bne 1b\n" : [ accesses ] "+r"(accesses), [ dummy ] "+r"(dummy) : [ size ] "r"(size), [ buf ] "r"(buf) : "memory", "cc", "x0", "x1", "x2"); } void MeasureCacheCounts(int accesses, int size, std::uint8_t* buf, CacheCounts* cache_counts) { const bool only_reads = getenv("ONLY_READS"); ArmPmuEvent ld_retired(ArmPmuEvent::LD_RETIRED); ArmPmuEvent mem_access(only_reads ? ArmPmuEvent::MEM_ACCESS_RD : ArmPmuEvent::MEM_ACCESS); ArmPmuEvent ll_cache(only_reads ? ArmPmuEvent::LL_CACHE_RD : ArmPmuEvent::LL_CACHE); ArmPmuEvent ll_cache_miss(only_reads ? ArmPmuEvent::LL_CACHE_MISS_RD : ArmPmuEvent::LL_CACHE_MISS); ArmPmuEvent l1d_cache(only_reads ? ArmPmuEvent::L1D_CACHE_RD : ArmPmuEvent::L1D_CACHE); ArmPmuEvent l1d_cache_refill(only_reads ? ArmPmuEvent::L1D_CACHE_REFILL_RD : ArmPmuEvent::L1D_CACHE_REFILL); ArmPmuEvent l2d_cache(only_reads ? ArmPmuEvent::L2D_CACHE_RD : ArmPmuEvent::L2D_CACHE); ArmPmuEvent l2d_cache_refill(only_reads ? ArmPmuEvent::L2D_CACHE_REFILL_RD : ArmPmuEvent::L2D_CACHE_REFILL); ArmPmuEvent l3d_cache(only_reads ? ArmPmuEvent::L3D_CACHE_RD : ArmPmuEvent::L3D_CACHE); ArmPmuEvent l3d_cache_refill(only_reads ? ArmPmuEvent::L3D_CACHE_REFILL_RD : ArmPmuEvent::L3D_CACHE_REFILL); ld_retired.Start(); mem_access.Start(); ll_cache.Start(); ll_cache_miss.Start(); l1d_cache.Start(); l1d_cache_refill.Start(); l2d_cache.Start(); l2d_cache_refill.Start(); l3d_cache.Start(); l3d_cache_refill.Start(); Workload(accesses, size, buf); cache_counts->ld_retired = ld_retired.Stop(); cache_counts->mem_access = mem_access.Stop(); cache_counts->ll_cache = ll_cache.Stop(); cache_counts->ll_cache_miss = ll_cache_miss.Stop(); cache_counts->l1d_cache = l1d_cache.Stop(); cache_counts->l1d_cache_refill = l1d_cache_refill.Stop(); cache_counts->l2d_cache = l2d_cache.Stop(); cache_counts->l2d_cache_refill = l2d_cache_refill.Stop(); cache_counts->l3d_cache = l3d_cache.Stop(); cache_counts->l3d_cache_refill = l3d_cache_refill.Stop(); } struct PieChart { // How many accesses were recorded, total? The other fields must sum to that. int total; // How many accesses were serviced with the typical cost of a L1 cache hit? int l1_hits; // How many accesses were serviced with the typical cost of a L2 cache hit? int l2_hits; // How many accesses were serviced with the typical cost of a L3 cache hit? int l3_hits; // How many accesses were serviced with the typical cost of a DRAM access? int dram_hits; ~PieChart() { // Consistency check if (total != l1_hits + l2_hits + l3_hits + dram_hits) { fprintf(stderr, "inconsistent pie-chart\n"); abort(); } } }; struct Hypothesis { virtual ~Hypothesis() {} virtual const char* Name() const = 0; virtual void Analyze(const CacheCounts& cache_counts, PieChart* pie) const = 0; }; struct Hypothesis1 : Hypothesis { const char* Name() const override { return "Hypothesis1"; } void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override { pie->total = cache_counts.l1d_cache + cache_counts.l1d_cache_refill; pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache_refill - cache_counts.l3d_cache_refill; pie->l2_hits = cache_counts.l1d_cache_refill; pie->l3_hits = cache_counts.l2d_cache_refill; pie->dram_hits = cache_counts.l3d_cache_refill; } }; struct Hypothesis2 : Hypothesis { const char* Name() const override { return "Hypothesis2"; } void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override { pie->total = cache_counts.l1d_cache; pie->l1_hits = cache_counts.l1d_cache - cache_counts.l2d_cache; pie->l2_hits = cache_counts.l2d_cache - cache_counts.l3d_cache; pie->l3_hits = cache_counts.l3d_cache - cache_counts.l3d_cache_refill; pie->dram_hits = cache_counts.l3d_cache_refill; } }; struct Hypothesis3 : Hypothesis { const char* Name() const override { return "Hypothesis3"; } void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override { pie->total = cache_counts.l1d_cache; int corrected_l2 = std::min(cache_counts.l2d_cache, cache_counts.l1d_cache); int corrected_l3 = std::min(cache_counts.l3d_cache, corrected_l2); pie->l1_hits = cache_counts.l1d_cache - corrected_l2; pie->l2_hits = corrected_l2 - corrected_l3; pie->l3_hits = corrected_l3 - cache_counts.l3d_cache_refill; pie->dram_hits = cache_counts.l3d_cache_refill; } }; struct Hypothesis4 : Hypothesis { const char* Name() const override { return "Hypothesis4"; } void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override { pie->total = cache_counts.l1d_cache; pie->l1_hits = cache_counts.l1d_cache - cache_counts.l1d_cache_refill; pie->l2_hits = cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill; pie->l3_hits = cache_counts.l2d_cache_refill - cache_counts.l3d_cache_refill; pie->dram_hits = cache_counts.l3d_cache_refill; } }; struct Hypothesis5 : Hypothesis { const char* Name() const override { return "Hypothesis5"; } void Analyze(const CacheCounts& cache_counts, PieChart* pie) const override { pie->l1_hits = std::max(0, cache_counts.l1d_cache - cache_counts.l1d_cache_refill); pie->l2_hits = std::max( 0, cache_counts.l1d_cache_refill - cache_counts.l2d_cache_refill); const int l3_misses = std::max(cache_counts.ll_cache_miss, cache_counts.l3d_cache_refill); pie->l3_hits = std::max(0, cache_counts.l2d_cache_refill - l3_misses); pie->dram_hits = l3_misses; pie->total = pie->l1_hits + pie->l2_hits + pie->l3_hits + pie->dram_hits; } }; void PrintPieChart(const PieChart& pie) { printf("total accesses: %d\n", pie.total); double l1_hits_pct = 100. * pie.l1_hits / pie.total; double l2_hits_pct = 100. * pie.l2_hits / pie.total; double l3_hits_pct = 100. * pie.l3_hits / pie.total; double dram_hits_pct = 100. * pie.dram_hits / pie.total; printf("L1 hits: %.2f%%\n", l1_hits_pct); printf("L2 hits: %.2f%%\n", l2_hits_pct); printf("L1/2 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct); printf("L3 hits: %.2f%%\n", l3_hits_pct); printf("L1/2/3 hits: %.2f%%\n", l1_hits_pct + l2_hits_pct + l3_hits_pct); printf("DRAM hits: %.2f%%\n", dram_hits_pct); } void PrintPieChartCsvNoNewline(const PieChart& pie) { double l1_hits_pct = 100. * pie.l1_hits / pie.total; double l2_hits_pct = 100. * pie.l2_hits / pie.total; double l3_hits_pct = 100. * pie.l3_hits / pie.total; double dram_hits_pct = 100. * pie.dram_hits / pie.total; printf("%.2f,%.2f,%.2f,%.2f", l1_hits_pct, l2_hits_pct, l3_hits_pct, dram_hits_pct); } void Study(int accesses, int size, std::uint8_t* buf) { CacheCounts cache_counts; MeasureCacheCounts(accesses, size, buf, &cache_counts); const Hypothesis* hypotheses[] = { new Hypothesis5, new Hypothesis4, new Hypothesis3, new Hypothesis2, new Hypothesis1, }; if (getenv("DUMP_CSV")) { printf("%d", size); for (const Hypothesis* hypothesis : hypotheses) { printf(","); PieChart pie; hypothesis->Analyze(cache_counts, &pie); PrintPieChartCsvNoNewline(pie); } printf("\n"); } else { printf("\n\n\naccesses=%d, size=%d:\n", accesses, size); printf("\nCache counts:\n"); PrintCacheCounts(cache_counts); for (const Hypothesis* hypothesis : hypotheses) { printf("\n%s:\n", hypothesis->Name()); PieChart pie; hypothesis->Analyze(cache_counts, &pie); PrintPieChart(pie); } } fflush(stdout); for (const Hypothesis* hypothesis : hypotheses) { delete hypothesis; } } int main() { const int kMinSize = 1 << 12; const int kMaxSize = 1 << 24; const int kAccesses = 1e8; void* buf_void = nullptr; posix_memalign(&buf_void, 64, kMaxSize); std::uint8_t* buf = static_cast(buf_void); std::default_random_engine random_engine; for (int i = 0; i < kMaxSize; i++) { buf[i] = random_engine(); } for (int size = kMinSize; size <= kMaxSize; size *= 2) { Study(kAccesses, size, buf); } delete[] buf; }