// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_loop.h" #include #include #include "base/bind.h" #include "base/compiler_specific.h" #include "base/debug/task_annotator.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/message_loop/message_pump_default.h" #include "base/message_loop/message_pump_for_io.h" #include "base/message_loop/message_pump_for_ui.h" #include "base/metrics/histogram_macros.h" #include "base/run_loop.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/thread_id_name_manager.h" #include "base/threading/thread_task_runner_handle.h" #include "base/trace_event/trace_event.h" #if defined(OS_MACOSX) #include "base/message_loop/message_pump_mac.h" #endif namespace base { namespace { MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = nullptr; std::unique_ptr ReturnPump(std::unique_ptr pump) { return pump; } enum class ScheduledWakeupResult { // The MessageLoop went to sleep with a timeout and woke up because of that // timeout. kCompleted, // The MessageLoop went to sleep with a timeout but was woken up before it // fired. kInterrupted, }; // Reports a ScheduledWakeup's result when waking up from a non-infinite sleep. // Reports are using a 14 day spread (maximum examined delay for // https://crbug.com/850450#c3), with 50 buckets that still yields 7 buckets // under 16ms and hence plenty of resolution. void ReportScheduledWakeupResult(ScheduledWakeupResult result, TimeDelta intended_sleep) { switch (result) { case ScheduledWakeupResult::kCompleted: UMA_HISTOGRAM_CUSTOM_TIMES("MessageLoop.ScheduledSleep.Completed", intended_sleep, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromDays(14), 50); break; case ScheduledWakeupResult::kInterrupted: UMA_HISTOGRAM_CUSTOM_TIMES("MessageLoop.ScheduledSleep.Interrupted", intended_sleep, base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromDays(14), 50); break; } } } // namespace class MessageLoop::Controller : public internal::IncomingTaskQueue::Observer { public: // Constructs a MessageLoopController which controls |message_loop|, notifying // |task_annotator_| when tasks are queued scheduling work on |message_loop| // as fits. |message_loop| and |task_annotator_| will not be used after // DisconnectFromParent() returns. Controller(MessageLoop* message_loop); ~Controller() override; // IncomingTaskQueue::Observer: void WillQueueTask(PendingTask* task) final; void DidQueueTask(bool was_empty) final; void StartScheduling(); // Disconnects |message_loop_| from this Controller instance (DidQueueTask() // will no-op from this point forward). void DisconnectFromParent(); // Shares this Controller's TaskAnnotator with MessageLoop as TaskAnnotator // requires DidQueueTask(x)/RunTask(x) to be invoked on the same TaskAnnotator // instance. debug::TaskAnnotator& task_annotator() { return task_annotator_; } private: // A TaskAnnotator which is owned by this Controller to be able to use it // without locking |message_loop_lock_|. It cannot be owned by MessageLoop // because this Controller cannot access |message_loop_| safely without the // lock. Note: the TaskAnnotator API itself is thread-safe. debug::TaskAnnotator task_annotator_; // Lock that serializes |message_loop_->ScheduleWork()| and access to all // members below. base::Lock message_loop_lock_; // Points to this Controller's outer MessageLoop instance. Null after // DisconnectFromParent(). MessageLoop* message_loop_; // False until StartScheduling() is called. bool is_ready_for_scheduling_ = false; // True if DidQueueTask() has been called before StartScheduling(); letting it // know whether it needs to ScheduleWork() right away or not. bool pending_schedule_work_ = false; DISALLOW_COPY_AND_ASSIGN(Controller); }; MessageLoop::Controller::Controller(MessageLoop* message_loop) : message_loop_(message_loop) {} MessageLoop::Controller::~Controller() { DCHECK(!message_loop_) << "DisconnectFromParent() needs to be invoked before destruction."; } void MessageLoop::Controller::WillQueueTask(PendingTask* task) { task_annotator_.WillQueueTask("MessageLoop::PostTask", task); } void MessageLoop::Controller::DidQueueTask(bool was_empty) { // Avoid locking if we don't need to schedule. if (!was_empty) return; AutoLock auto_lock(message_loop_lock_); if (message_loop_ && is_ready_for_scheduling_) message_loop_->ScheduleWork(); else pending_schedule_work_ = true; } void MessageLoop::Controller::StartScheduling() { AutoLock lock(message_loop_lock_); DCHECK(message_loop_); DCHECK(!is_ready_for_scheduling_); is_ready_for_scheduling_ = true; if (pending_schedule_work_) message_loop_->ScheduleWork(); } void MessageLoop::Controller::DisconnectFromParent() { AutoLock lock(message_loop_lock_); message_loop_ = nullptr; } //------------------------------------------------------------------------------ MessageLoop::MessageLoop(Type type) : MessageLoop(type, MessagePumpFactoryCallback()) { BindToCurrentThread(); } MessageLoop::MessageLoop(std::unique_ptr pump) : MessageLoop(TYPE_CUSTOM, BindOnce(&ReturnPump, std::move(pump))) { BindToCurrentThread(); } MessageLoop::~MessageLoop() { // If |pump_| is non-null, this message loop has been bound and should be the // current one on this thread. Otherwise, this loop is being destructed before // it was bound to a thread, so a different message loop (or no loop at all) // may be current. DCHECK((pump_ && MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this))); // iOS just attaches to the loop, it doesn't Run it. // TODO(stuartmorgan): Consider wiring up a Detach(). #if !defined(OS_IOS) // There should be no active RunLoops on this thread, unless this MessageLoop // isn't bound to the current thread (see other condition at the top of this // method). DCHECK( (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || !RunLoop::IsRunningOnCurrentThread()); #endif // !defined(OS_IOS) #if defined(OS_WIN) if (in_high_res_mode_) Time::ActivateHighResolutionTimer(false); #endif // Clean up any unprocessed tasks, but take care: deleting a task could // result in the addition of more tasks (e.g., via DeleteSoon). We set a // limit on the number of times we will allow a deleted task to generate more // tasks. Normally, we should only pass through this loop once or twice. If // we end up hitting the loop limit, then it is probably due to one task that // is being stubborn. Inspect the queues to see who is left. bool tasks_remain; for (int i = 0; i < 100; ++i) { DeletePendingTasks(); // If we end up with empty queues, then break out of the loop. tasks_remain = incoming_task_queue_->triage_tasks().HasTasks(); if (!tasks_remain) break; } DCHECK(!tasks_remain); // Let interested parties have one last shot at accessing this. for (auto& observer : destruction_observers_) observer.WillDestroyCurrentMessageLoop(); thread_task_runner_handle_.reset(); // Tell the incoming queue that we are dying. message_loop_controller_->DisconnectFromParent(); incoming_task_queue_->Shutdown(); incoming_task_queue_ = nullptr; unbound_task_runner_ = nullptr; task_runner_ = nullptr; // OK, now make it so that no one can find us. if (MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) MessageLoopCurrent::UnbindFromCurrentThreadInternal(this); } // static MessageLoopCurrent MessageLoop::current() { return MessageLoopCurrent::Get(); } // static bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) { if (message_pump_for_ui_factory_) return false; message_pump_for_ui_factory_ = factory; return true; } // static std::unique_ptr MessageLoop::CreateMessagePumpForType(Type type) { #if !defined(OS_ANDROID) if (type == MessageLoop::TYPE_UI) { if (message_pump_for_ui_factory_) return message_pump_for_ui_factory_(); #if defined(OS_IOS) || defined(OS_MACOSX) return MessagePumpMac::Create(); #elif defined(OS_NACL) || defined(OS_AIX) // Currently NaCl and AIX don't have a UI MessageLoop. // TODO(abarth): Figure out if we need this. NOTREACHED(); return nullptr; #else return std::make_unique(); #endif } #endif if (type == MessageLoop::TYPE_IO) return std::unique_ptr(new MessagePumpForIO()); #if defined(OS_ANDROID) && 0 if (type == MessageLoop::TYPE_JAVA) return std::unique_ptr(new MessagePumpForUI()); #endif DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type); #if defined(OS_IOS) // On iOS, a native runloop is always required to pump system work. return std::make_unique(); #else return std::make_unique(); #endif } bool MessageLoop::IsType(Type type) const { return type_ == type; } // TODO(gab): Migrate TaskObservers to RunLoop as part of separating concerns // between MessageLoop and RunLoop and making MessageLoop a swappable // implementation detail. http://crbug.com/703346 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); task_observers_.AddObserver(task_observer); } void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); task_observers_.RemoveObserver(task_observer); } bool MessageLoop::IsIdleForTesting() { // Have unprocessed tasks? (this reloads the work queue if necessary) if (incoming_task_queue_->triage_tasks().HasTasks()) return false; // Have unprocessed deferred tasks which can be processed at this run-level? if (incoming_task_queue_->deferred_tasks().HasTasks() && !RunLoop::IsNestedOnCurrentThread()) { return false; } return true; } //------------------------------------------------------------------------------ // static std::unique_ptr MessageLoop::CreateUnbound( Type type, MessagePumpFactoryCallback pump_factory) { return WrapUnique(new MessageLoop(type, std::move(pump_factory))); } // TODO(gab): Avoid bare new + WrapUnique below when introducing // SequencedTaskSource in follow-up @ // https://chromium-review.googlesource.com/c/chromium/src/+/1088762. MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory) : MessageLoopCurrent(this), type_(type), pump_factory_(std::move(pump_factory)), message_loop_controller_(new Controller(this)), incoming_task_queue_(MakeRefCounted( WrapUnique(message_loop_controller_))), unbound_task_runner_(MakeRefCounted( incoming_task_queue_)), task_runner_(unbound_task_runner_) { // If type is TYPE_CUSTOM non-null pump_factory must be given. DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null()); // Bound in BindToCurrentThread(); DETACH_FROM_THREAD(bound_thread_checker_); } void MessageLoop::BindToCurrentThread() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); DCHECK(!pump_); if (!pump_factory_.is_null()) pump_ = std::move(pump_factory_).Run(); else pump_ = CreateMessagePumpForType(type_); DCHECK(!MessageLoopCurrent::IsSet()) << "should only have one message loop per thread"; MessageLoopCurrent::BindToCurrentThreadInternal(this); message_loop_controller_->StartScheduling(); unbound_task_runner_->BindToCurrentThread(); unbound_task_runner_ = nullptr; SetThreadTaskRunnerHandle(); thread_id_ = PlatformThread::CurrentId(); scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique< internal::ScopedSetSequenceLocalStorageMapForCurrentThread>( &sequence_local_storage_map_); RunLoop::RegisterDelegateForCurrentThread(this); #if defined(OS_ANDROID) && 0 // On Android, attach to the native loop when there is one. if (type_ == TYPE_UI || type_ == TYPE_JAVA) static_cast(pump_.get())->Attach(this); #endif } std::string MessageLoop::GetThreadName() const { DCHECK_NE(kInvalidThreadId, thread_id_) << "GetThreadName() must only be called after BindToCurrentThread()'s " << "side-effects have been synchronized with this thread."; return ThreadIdNameManager::GetInstance()->GetName(thread_id_); } void MessageLoop::SetTaskRunner( scoped_refptr task_runner) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); DCHECK(task_runner); DCHECK(task_runner->BelongsToCurrentThread()); DCHECK(!unbound_task_runner_); task_runner_ = std::move(task_runner); SetThreadTaskRunnerHandle(); } void MessageLoop::ClearTaskRunnerForTesting() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); DCHECK(!unbound_task_runner_); task_runner_ = nullptr; thread_task_runner_handle_.reset(); } void MessageLoop::Run(bool application_tasks_allowed) { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); if (application_tasks_allowed && !task_execution_allowed_) { // Allow nested task execution as explicitly requested. DCHECK(RunLoop::IsNestedOnCurrentThread()); task_execution_allowed_ = true; pump_->Run(this); task_execution_allowed_ = false; } else { pump_->Run(this); } } void MessageLoop::Quit() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); pump_->Quit(); } void MessageLoop::EnsureWorkScheduled() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); if (incoming_task_queue_->triage_tasks().HasTasks()) pump_->ScheduleWork(); } void MessageLoop::SetThreadTaskRunnerHandle() { DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); // Clear the previous thread task runner first, because only one can exist at // a time. thread_task_runner_handle_.reset(); thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_)); } bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (RunLoop::IsNestedOnCurrentThread()) return false; while (incoming_task_queue_->deferred_tasks().HasTasks()) { PendingTask pending_task = incoming_task_queue_->deferred_tasks().Pop(); if (!pending_task.task.IsCancelled()) { RunTask(&pending_task); return true; } } return false; } void MessageLoop::RunTask(PendingTask* pending_task) { DCHECK(task_execution_allowed_); // Execute the task and assume the worst: It is probably not reentrant. task_execution_allowed_ = false; TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task); for (auto& observer : task_observers_) observer.WillProcessTask(*pending_task); message_loop_controller_->task_annotator().RunTask("MessageLoop::PostTask", pending_task); for (auto& observer : task_observers_) observer.DidProcessTask(*pending_task); task_execution_allowed_ = true; } bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) { if (pending_task.nestable == Nestable::kNestable || !RunLoop::IsNestedOnCurrentThread()) { RunTask(&pending_task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested run loop // and the task isn't nestable. incoming_task_queue_->deferred_tasks().Push(std::move(pending_task)); return false; } void MessageLoop::DeletePendingTasks() { incoming_task_queue_->triage_tasks().Clear(); incoming_task_queue_->deferred_tasks().Clear(); // TODO(robliao): Determine if we can move delayed task destruction before // deferred tasks to maintain the MessagePump DoWork, DoDelayedWork, and // DoIdleWork processing order. incoming_task_queue_->delayed_tasks().Clear(); } void MessageLoop::ScheduleWork() { pump_->ScheduleWork(); } bool MessageLoop::DoWork() { if (!task_execution_allowed_) return false; // Execute oldest task. while (incoming_task_queue_->triage_tasks().HasTasks()) { if (!scheduled_wakeup_.next_run_time.is_null()) { // While the frontmost task may racily be ripe. The MessageLoop was awaken // without needing the timeout anyways. Since this metric is about // determining whether sleeping for long periods ever succeeds: it's // easier to just consider any untriaged task as an interrupt (this also // makes the logic simpler for untriaged delayed tasks which may alter the // top of the task queue prior to DoDelayedWork() but did cause a wakeup // regardless -- per currently requiring this immediate triage step even // for long delays). ReportScheduledWakeupResult(ScheduledWakeupResult::kInterrupted, scheduled_wakeup_.intended_sleep); scheduled_wakeup_ = ScheduledWakeup(); } PendingTask pending_task = incoming_task_queue_->triage_tasks().Pop(); if (pending_task.task.IsCancelled()) continue; if (!pending_task.delayed_run_time.is_null()) { int sequence_num = pending_task.sequence_num; TimeTicks delayed_run_time = pending_task.delayed_run_time; incoming_task_queue_->delayed_tasks().Push(std::move(pending_task)); // If we changed the topmost task, then it is time to reschedule. if (incoming_task_queue_->delayed_tasks().Peek().sequence_num == sequence_num) { pump_->ScheduleDelayedWork(delayed_run_time); } } else if (DeferOrRunPendingTask(std::move(pending_task))) { return true; } } // Nothing happened. return false; } bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) { if (!task_execution_allowed_) { *next_delayed_work_time = TimeTicks(); // |scheduled_wakeup_| isn't used in nested loops that don't process // application tasks. DCHECK(scheduled_wakeup_.next_run_time.is_null()); return false; } if (!incoming_task_queue_->delayed_tasks().HasTasks()) { *next_delayed_work_time = TimeTicks(); // It's possible to be woken up by a system event and have it cancel the // upcoming delayed task from under us before DoDelayedWork() -- see comment // under |next_run_time > recent_time_|. This condition covers the special // case where such a system event cancelled *all* pending delayed tasks. if (!scheduled_wakeup_.next_run_time.is_null()) { ReportScheduledWakeupResult(ScheduledWakeupResult::kInterrupted, scheduled_wakeup_.intended_sleep); scheduled_wakeup_ = ScheduledWakeup(); } return false; } // When we "fall behind", there will be a lot of tasks in the delayed work // queue that are ready to run. To increase efficiency when we fall behind, // we will only call Time::Now() intermittently, and then process all tasks // that are ready to run before calling it again. As a result, the more we // fall behind (and have a lot of ready-to-run delayed tasks), the more // efficient we'll be at handling the tasks. TimeTicks next_run_time = incoming_task_queue_->delayed_tasks().Peek().delayed_run_time; if (next_run_time > recent_time_) { recent_time_ = TimeTicks::Now(); // Get a better view of Now(); if (next_run_time > recent_time_) { *next_delayed_work_time = next_run_time; // If the loop was woken up early by an untriaged task: // |scheduled_wakeup_| will have been handled already in DoWork(). If it // wasn't, it means the early wake up was caused by a system event (e.g. // MessageLoopForUI or IO). if (!scheduled_wakeup_.next_run_time.is_null()) { // Handling the system event may have resulted in cancelling the // upcoming delayed task (and then it being pruned by // DelayedTaskQueue::HasTasks()); hence, we cannot check for strict // equality here. We can however check that the pending task is either // still there or that a later delay replaced it in front of the queue. // There shouldn't have been new tasks added in |delayed_tasks()| per // DoWork() not having triaged new tasks since the last DoIdleWork(). DCHECK_GE(next_run_time, scheduled_wakeup_.next_run_time); ReportScheduledWakeupResult(ScheduledWakeupResult::kInterrupted, scheduled_wakeup_.intended_sleep); scheduled_wakeup_ = ScheduledWakeup(); } return false; } } if (next_run_time == scheduled_wakeup_.next_run_time) { ReportScheduledWakeupResult(ScheduledWakeupResult::kCompleted, scheduled_wakeup_.intended_sleep); scheduled_wakeup_ = ScheduledWakeup(); } PendingTask pending_task = incoming_task_queue_->delayed_tasks().Pop(); if (incoming_task_queue_->delayed_tasks().HasTasks()) { *next_delayed_work_time = incoming_task_queue_->delayed_tasks().Peek().delayed_run_time; } return DeferOrRunPendingTask(std::move(pending_task)); } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; #if defined(OS_WIN) bool need_high_res_timers = false; #endif // Do not report idle metrics nor do any logic related to delayed tasks if // about to quit the loop and/or in a nested loop where // |!task_execution_allowed_|. In the former case, the loop isn't going to // sleep and in the latter case DoDelayedWork() will not actually do the work // this is prepping for. if (ShouldQuitWhenIdle()) { pump_->Quit(); } else if (task_execution_allowed_) { incoming_task_queue_->ReportMetricsOnIdle(); if (incoming_task_queue_->delayed_tasks().HasTasks()) { TimeTicks scheduled_wakeup_time = incoming_task_queue_->delayed_tasks().Peek().delayed_run_time; if (!scheduled_wakeup_.next_run_time.is_null()) { // It's possible for DoIdleWork() to be invoked twice in a row (e.g. if // the MessagePump processed system work and became idle twice in a row // without application tasks in between -- some pumps with a native // message loop do not invoke DoWork() / DoDelayedWork() when awaken for // system work only). As in DoDelayedWork(), we cannot check for strict // equality below as the system work may have cancelled the frontmost // task. DCHECK_GE(scheduled_wakeup_time, scheduled_wakeup_.next_run_time); ReportScheduledWakeupResult(ScheduledWakeupResult::kInterrupted, scheduled_wakeup_.intended_sleep); scheduled_wakeup_ = ScheduledWakeup(); } // Store the remaining delay as well as the programmed wakeup time in // order to know next time this MessageLoop wakes up whether it woke up // because of this pending task (is it still the frontmost task in the // queue?) and be able to report the slept delta (which is lost if not // saved here). scheduled_wakeup_ = ScheduledWakeup{ scheduled_wakeup_time, scheduled_wakeup_time - TimeTicks::Now()}; } #if defined(OS_WIN) // On Windows we activate the high resolution timer so that the wait // _if_ triggered by the timer happens with good resolution. If we don't // do this the default resolution is 15ms which might not be acceptable // for some tasks. need_high_res_timers = incoming_task_queue_->HasPendingHighResolutionTasks(); #endif } #if defined(OS_WIN) if (in_high_res_mode_ != need_high_res_timers) { in_high_res_mode_ = need_high_res_timers; Time::ActivateHighResolutionTimer(in_high_res_mode_); } #endif // When we return we will do a kernel wait for more tasks. return false; } #if !defined(OS_NACL) && !defined(OS_ANDROID) //------------------------------------------------------------------------------ // MessageLoopForUI MessageLoopForUI::MessageLoopForUI(Type type) : MessageLoop(type) { #if defined(OS_ANDROID) DCHECK(type == TYPE_UI || type == TYPE_JAVA); #else DCHECK_EQ(type, TYPE_UI); #endif } // static MessageLoopCurrentForUI MessageLoopForUI::current() { return MessageLoopCurrentForUI::Get(); } // static bool MessageLoopForUI::IsCurrent() { return MessageLoopCurrentForUI::IsSet(); } #if defined(OS_IOS) void MessageLoopForUI::Attach() { static_cast(pump_.get())->Attach(this); } #endif // defined(OS_IOS) #if defined(OS_ANDROID) void MessageLoopForUI::Abort() { static_cast(pump_.get())->Abort(); } bool MessageLoopForUI::IsAborted() { return static_cast(pump_.get())->IsAborted(); } void MessageLoopForUI::QuitWhenIdle(base::OnceClosure callback) { static_cast(pump_.get()) ->QuitWhenIdle(std::move(callback)); } #endif // defined(OS_ANDROID) #if defined(OS_WIN) void MessageLoopForUI::EnableWmQuit() { static_cast(pump_.get())->EnableWmQuit(); } #endif // defined(OS_WIN) #endif // !defined(OS_NACL) && !defined(OS_ANDROID) //------------------------------------------------------------------------------ // MessageLoopForIO // static MessageLoopCurrentForIO MessageLoopForIO::current() { return MessageLoopCurrentForIO::Get(); } // static bool MessageLoopForIO::IsCurrent() { return MessageLoopCurrentForIO::IsSet(); } } // namespace base