// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/geometry/matrix3_f.h" namespace gfx { namespace { TEST(Matrix3fTest, Constructors) { Matrix3F zeros = Matrix3F::Zeros(); Matrix3F ones = Matrix3F::Ones(); Matrix3F identity = Matrix3F::Identity(); Matrix3F product_ones = Matrix3F::FromOuterProduct( Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(1.0f, 1.0f, 1.0f)); Matrix3F product_zeros = Matrix3F::FromOuterProduct( Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(0.0f, 0.0f, 0.0f)); EXPECT_EQ(ones, product_ones); EXPECT_EQ(zeros, product_zeros); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) EXPECT_EQ(i == j ? 1.0f : 0.0f, identity.get(i, j)); } } TEST(Matrix3fTest, DataAccess) { Matrix3F matrix = Matrix3F::Ones(); Matrix3F identity = Matrix3F::Identity(); EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_column(1)); EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_row(1)); matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f); EXPECT_EQ(Vector3dF(2.0f, 5.0f, 8.0f), matrix.get_column(2)); EXPECT_EQ(Vector3dF(6.0f, 7.0f, 8.0f), matrix.get_row(2)); matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f)); matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f)); EXPECT_EQ(Vector3dF(0.1f, 0.2f, 0.3f), matrix.get_column(0)); EXPECT_EQ(Vector3dF(0.1f, 1.0f, 2.0f), matrix.get_row(0)); EXPECT_EQ(0.1f, matrix.get(0, 0)); EXPECT_EQ(5.0f, matrix.get(1, 2)); } TEST(Matrix3fTest, Determinant) { EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant()); EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant()); EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant()); // Now for something non-trivial... Matrix3F matrix = Matrix3F::Zeros(); matrix.set(0, 5, 6, 8, 7, 0, 1, 9, 0); EXPECT_EQ(390.0f, matrix.Determinant()); matrix.set(2, 0, 3 * matrix.get(0, 0)); matrix.set(2, 1, 3 * matrix.get(0, 1)); matrix.set(2, 2, 3 * matrix.get(0, 2)); EXPECT_EQ(0, matrix.Determinant()); matrix.set(0.57f, 0.205f, 0.942f, 0.314f, 0.845f, 0.826f, 0.131f, 0.025f, 0.962f); EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f); } TEST(Matrix3fTest, Inverse) { Matrix3F identity = Matrix3F::Identity(); Matrix3F inv_identity = identity.Inverse(); EXPECT_EQ(identity, inv_identity); Matrix3F singular = Matrix3F::Zeros(); singular.set(1.0f, 3.0f, 4.0f, 2.0f, 11.0f, 5.0f, 0.5f, 1.5f, 2.0f); EXPECT_EQ(0, singular.Determinant()); EXPECT_EQ(Matrix3F::Zeros(), singular.Inverse()); Matrix3F regular = Matrix3F::Zeros(); regular.set(0.57f, 0.205f, 0.942f, 0.314f, 0.845f, 0.826f, 0.131f, 0.025f, 0.962f); Matrix3F inv_regular = regular.Inverse(); regular.set(2.51540616f, -0.55138018f, -1.98968043f, -0.61552266f, 1.34920184f, -0.55573636f, -0.32653861f, 0.04002158f, 1.32488726f); EXPECT_TRUE(regular.IsNear(inv_regular, 0.00001f)); } TEST(Matrix3fTest, Transpose) { Matrix3F matrix = Matrix3F::Zeros(); matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f); Matrix3F transpose = matrix.Transpose(); EXPECT_EQ(Vector3dF(0.0f, 1.0f, 2.0f), transpose.get_column(0)); EXPECT_EQ(Vector3dF(3.0f, 4.0f, 5.0f), transpose.get_column(1)); EXPECT_EQ(Vector3dF(6.0f, 7.0f, 8.0f), transpose.get_column(2)); EXPECT_TRUE(matrix.IsEqual(transpose.Transpose())); } TEST(Matrix3fTest, EigenvectorsIdentity) { // This block tests the trivial case of eigenvalues of the identity matrix. Matrix3F identity = Matrix3F::Identity(); Vector3dF eigenvals = identity.SolveEigenproblem(NULL); EXPECT_EQ(Vector3dF(1.0f, 1.0f, 1.0f), eigenvals); } TEST(Matrix3fTest, EigenvectorsDiagonal) { // This block tests the another trivial case of eigenvalues of a diagonal // matrix. Here we expect values to be sorted. Matrix3F matrix = Matrix3F::Zeros(); matrix.set(0, 0, 1.0f); matrix.set(1, 1, -2.5f); matrix.set(2, 2, 3.14f); Matrix3F eigenvectors = Matrix3F::Zeros(); Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); EXPECT_EQ(Vector3dF(3.14f, 1.0f, -2.5f), eigenvals); EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); } TEST(Matrix3fTest, EigenvectorsNiceNotPositive) { // This block tests computation of eigenvectors of a matrix where nice // round values are expected. Matrix3F matrix = Matrix3F::Zeros(); // This is not a positive-definite matrix but eigenvalues and the first // eigenvector should nonetheless be computed correctly. matrix.set(3, 2, 4, 2, 0, 2, 4, 2, 3); Matrix3F eigenvectors = Matrix3F::Zeros(); Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); EXPECT_EQ(Vector3dF(8.0f, -1.0f, -1.0f), eigenvals); Vector3dF expected_principal(0.66666667f, 0.33333333f, 0.66666667f); EXPECT_NEAR(0.0f, (expected_principal - eigenvectors.get_column(0)).Length(), 0.000001f); } TEST(Matrix3fTest, EigenvectorsPositiveDefinite) { // This block tests computation of eigenvectors of a matrix where output // is not as nice as above, but it actually meets the definition. Matrix3F matrix = Matrix3F::Zeros(); Matrix3F eigenvectors = Matrix3F::Zeros(); Matrix3F expected_eigenvectors = Matrix3F::Zeros(); matrix.set(1, -1, 2, -1, 4, 5, 2, 5, 0); Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); Vector3dF expected_eigv(7.3996266f, 1.91197255f, -4.31159915f); expected_eigv -= eigenvals; EXPECT_NEAR(0, expected_eigv.LengthSquared(), 0.00001f); expected_eigenvectors.set(0.04926317f, -0.92135662f, -0.38558414f, 0.82134249f, 0.25703273f, -0.50924521f, 0.56830419f, -0.2916096f, 0.76941158f); EXPECT_TRUE(expected_eigenvectors.IsNear(eigenvectors, 0.00001f)); } TEST(Matrix3fTest, Operators) { Matrix3F matrix1 = Matrix3F::Zeros(); matrix1.set(1, 2, 3, 4, 5, 6, 7, 8, 9); EXPECT_EQ(matrix1 + Matrix3F::Zeros(), matrix1); Matrix3F matrix2 = Matrix3F::Zeros(); matrix2.set(-1, -2, -3, -4, -5, -6, -7, -8, -9); EXPECT_EQ(matrix1 + matrix2, Matrix3F::Zeros()); EXPECT_EQ(Matrix3F::Zeros() - matrix1, matrix2); Matrix3F result = Matrix3F::Zeros(); result.set(2, 4, 6, 8, 10, 12, 14, 16, 18); EXPECT_EQ(matrix1 - matrix2, result); result.set(-2, -4, -6, -8, -10, -12, -14, -16, -18); EXPECT_EQ(matrix2 - matrix1, result); } } // namespace } // namespace gfx