// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "base/macros.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" #include "ui/gfx/geometry/vector3d_f.h" namespace gfx { TEST(Vector3dTest, IsZero) { gfx::Vector3dF float_zero(0, 0, 0); gfx::Vector3dF float_nonzero(0.1f, -0.1f, 0.1f); EXPECT_TRUE(float_zero.IsZero()); EXPECT_FALSE(float_nonzero.IsZero()); } TEST(Vector3dTest, Add) { gfx::Vector3dF f1(3.1f, 5.1f, 2.7f); gfx::Vector3dF f2(4.3f, -1.3f, 8.1f); const struct { gfx::Vector3dF expected; gfx::Vector3dF actual; } float_tests[] = { { gfx::Vector3dF(3.1F, 5.1F, 2.7f), f1 + gfx::Vector3dF() }, { gfx::Vector3dF(3.1f + 4.3f, 5.1f - 1.3f, 2.7f + 8.1f), f1 + f2 }, { gfx::Vector3dF(3.1f - 4.3f, 5.1f + 1.3f, 2.7f - 8.1f), f1 - f2 } }; for (size_t i = 0; i < arraysize(float_tests); ++i) EXPECT_EQ(float_tests[i].expected.ToString(), float_tests[i].actual.ToString()); } TEST(Vector3dTest, Negative) { const struct { gfx::Vector3dF expected; gfx::Vector3dF actual; } float_tests[] = { { gfx::Vector3dF(-0.0f, -0.0f, -0.0f), -gfx::Vector3dF(0, 0, 0) }, { gfx::Vector3dF(-0.3f, -0.3f, -0.3f), -gfx::Vector3dF(0.3f, 0.3f, 0.3f) }, { gfx::Vector3dF(0.3f, 0.3f, 0.3f), -gfx::Vector3dF(-0.3f, -0.3f, -0.3f) }, { gfx::Vector3dF(-0.3f, 0.3f, -0.3f), -gfx::Vector3dF(0.3f, -0.3f, 0.3f) }, { gfx::Vector3dF(0.3f, -0.3f, -0.3f), -gfx::Vector3dF(-0.3f, 0.3f, 0.3f) }, { gfx::Vector3dF(-0.3f, -0.3f, 0.3f), -gfx::Vector3dF(0.3f, 0.3f, -0.3f) } }; for (size_t i = 0; i < arraysize(float_tests); ++i) EXPECT_EQ(float_tests[i].expected.ToString(), float_tests[i].actual.ToString()); } TEST(Vector3dTest, Scale) { float triple_values[][6] = { { 4.5f, 1.2f, 1.8f, 3.3f, 5.6f, 4.2f }, { 4.5f, -1.2f, -1.8f, 3.3f, 5.6f, 4.2f }, { 4.5f, 1.2f, -1.8f, 3.3f, 5.6f, 4.2f }, { 4.5f, -1.2f -1.8f, 3.3f, 5.6f, 4.2f }, { 4.5f, 1.2f, 1.8f, 3.3f, -5.6f, -4.2f }, { 4.5f, 1.2f, 1.8f, -3.3f, -5.6f, -4.2f }, { 4.5f, 1.2f, -1.8f, 3.3f, -5.6f, -4.2f }, { 4.5f, 1.2f, -1.8f, -3.3f, -5.6f, -4.2f }, { -4.5f, 1.2f, 1.8f, 3.3f, 5.6f, 4.2f }, { -4.5f, 1.2f, 1.8f, 0, 5.6f, 4.2f }, { -4.5f, 1.2f, -1.8f, 3.3f, 5.6f, 4.2f }, { -4.5f, 1.2f, -1.8f, 0, 5.6f, 4.2f }, { -4.5f, 1.2f, 1.8f, 3.3f, 0, 4.2f }, { 4.5f, 0, 1.8f, 3.3f, 5.6f, 4.2f }, { -4.5f, 1.2f, -1.8f, 3.3f, 0, 4.2f }, { 4.5f, 0, -1.8f, 3.3f, 5.6f, 4.2f }, { -4.5f, 1.2f, 1.8f, 3.3f, 5.6f, 0 }, { -4.5f, 1.2f, -1.8f, 3.3f, 5.6f, 0 }, { 0, 1.2f, 0, 3.3f, 5.6f, 4.2f }, { 0, 1.2f, 1.8f, 3.3f, 5.6f, 4.2f } }; for (size_t i = 0; i < arraysize(triple_values); ++i) { gfx::Vector3dF v(triple_values[i][0], triple_values[i][1], triple_values[i][2]); v.Scale(triple_values[i][3], triple_values[i][4], triple_values[i][5]); EXPECT_EQ(triple_values[i][0] * triple_values[i][3], v.x()); EXPECT_EQ(triple_values[i][1] * triple_values[i][4], v.y()); EXPECT_EQ(triple_values[i][2] * triple_values[i][5], v.z()); Vector3dF v2 = ScaleVector3d( gfx::Vector3dF(triple_values[i][0], triple_values[i][1], triple_values[i][2]), triple_values[i][3], triple_values[i][4], triple_values[i][5]); EXPECT_EQ(triple_values[i][0] * triple_values[i][3], v2.x()); EXPECT_EQ(triple_values[i][1] * triple_values[i][4], v2.y()); EXPECT_EQ(triple_values[i][2] * triple_values[i][5], v2.z()); } float single_values[][4] = { { 4.5f, 1.2f, 1.8f, 3.3f }, { 4.5f, -1.2f, 1.8f, 3.3f }, { 4.5f, 1.2f, -1.8f, 3.3f }, { 4.5f, -1.2f, -1.8f, 3.3f }, { -4.5f, 1.2f, 3.3f }, { -4.5f, 1.2f, 0 }, { -4.5f, 1.2f, 1.8f, 3.3f }, { -4.5f, 1.2f, 1.8f, 0 }, { 4.5f, 0, 1.8f, 3.3f }, { 0, 1.2f, 1.8f, 3.3f }, { 4.5f, 0, 1.8f, 3.3f }, { 0, 1.2f, 1.8f, 3.3f }, { 4.5f, 1.2f, 0, 3.3f }, { 4.5f, 1.2f, 0, 3.3f } }; for (size_t i = 0; i < arraysize(single_values); ++i) { gfx::Vector3dF v(single_values[i][0], single_values[i][1], single_values[i][2]); v.Scale(single_values[i][3]); EXPECT_EQ(single_values[i][0] * single_values[i][3], v.x()); EXPECT_EQ(single_values[i][1] * single_values[i][3], v.y()); EXPECT_EQ(single_values[i][2] * single_values[i][3], v.z()); Vector3dF v2 = ScaleVector3d( gfx::Vector3dF(single_values[i][0], single_values[i][1], single_values[i][2]), single_values[i][3]); EXPECT_EQ(single_values[i][0] * single_values[i][3], v2.x()); EXPECT_EQ(single_values[i][1] * single_values[i][3], v2.y()); EXPECT_EQ(single_values[i][2] * single_values[i][3], v2.z()); } } TEST(Vector3dTest, Length) { float float_values[][3] = { { 0, 0, 0 }, { 10.5f, 20.5f, 8.5f }, { 20.5f, 10.5f, 8.5f }, { 8.5f, 20.5f, 10.5f }, { 10.5f, 8.5f, 20.5f }, { -10.5f, -20.5f, -8.5f }, { -20.5f, 10.5f, -8.5f }, { -8.5f, -20.5f, -10.5f }, { -10.5f, -8.5f, -20.5f }, { 10.5f, -20.5f, 8.5f }, { -10.5f, 20.5f, 8.5f }, { 10.5f, -20.5f, -8.5f }, { -10.5f, 20.5f, -8.5f }, // A large vector that fails if the Length function doesn't use // double precision internally. { 1236278317862780234892374893213178027.12122348904204230f, 335890352589839028212313231225425134332.38123f, 27861786423846742743236423478236784678.236713617231f } }; for (size_t i = 0; i < arraysize(float_values); ++i) { double v0 = float_values[i][0]; double v1 = float_values[i][1]; double v2 = float_values[i][2]; double length_squared = static_cast(v0) * v0 + static_cast(v1) * v1 + static_cast(v2) * v2; double length = std::sqrt(length_squared); gfx::Vector3dF vector(v0, v1, v2); EXPECT_DOUBLE_EQ(length_squared, vector.LengthSquared()); EXPECT_FLOAT_EQ(static_cast(length), vector.Length()); } } TEST(Vector3dTest, DotProduct) { const struct { float expected; gfx::Vector3dF input1; gfx::Vector3dF input2; } tests[] = { { 0, gfx::Vector3dF(1, 0, 0), gfx::Vector3dF(0, 1, 1) }, { 0, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(1, 0, 1) }, { 0, gfx::Vector3dF(0, 0, 1), gfx::Vector3dF(1, 1, 0) }, { 3, gfx::Vector3dF(1, 1, 1), gfx::Vector3dF(1, 1, 1) }, { 1.2f, gfx::Vector3dF(1.2f, -1.2f, 1.2f), gfx::Vector3dF(1, 1, 1) }, { 1.2f, gfx::Vector3dF(1, 1, 1), gfx::Vector3dF(1.2f, -1.2f, 1.2f) }, { 38.72f, gfx::Vector3dF(1.1f, 2.2f, 3.3f), gfx::Vector3dF(4.4f, 5.5f, 6.6f) } }; for (size_t i = 0; i < arraysize(tests); ++i) { float actual = gfx::DotProduct(tests[i].input1, tests[i].input2); EXPECT_EQ(tests[i].expected, actual); } } TEST(Vector3dTest, CrossProduct) { const struct { gfx::Vector3dF expected; gfx::Vector3dF input1; gfx::Vector3dF input2; } tests[] = { { Vector3dF(), Vector3dF(), Vector3dF(1, 1, 1) }, { Vector3dF(), Vector3dF(1, 1, 1), Vector3dF() }, { Vector3dF(), Vector3dF(1, 1, 1), Vector3dF(1, 1, 1) }, { Vector3dF(), Vector3dF(1.6f, 10.6f, -10.6f), Vector3dF(1.6f, 10.6f, -10.6f) }, { Vector3dF(1, -1, 0), Vector3dF(1, 1, 1), Vector3dF(0, 0, 1) }, { Vector3dF(-1, 0, 1), Vector3dF(1, 1, 1), Vector3dF(0, 1, 0) }, { Vector3dF(0, 1, -1), Vector3dF(1, 1, 1), Vector3dF(1, 0, 0) }, { Vector3dF(-1, 1, 0), Vector3dF(0, 0, 1), Vector3dF(1, 1, 1) }, { Vector3dF(1, 0, -1), Vector3dF(0, 1, 0), Vector3dF(1, 1, 1) }, { Vector3dF(0, -1, 1), Vector3dF(1, 0, 0), Vector3dF(1, 1, 1) } }; for (size_t i = 0; i < arraysize(tests); ++i) { SCOPED_TRACE(i); Vector3dF actual = gfx::CrossProduct(tests[i].input1, tests[i].input2); EXPECT_EQ(tests[i].expected.ToString(), actual.ToString()); } } TEST(Vector3dFTest, ClampVector3dF) { Vector3dF a; a = Vector3dF(3.5f, 5.5f, 7.5f); EXPECT_EQ(Vector3dF(3.5f, 5.5f, 7.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(2, 4.5f, 6.5f)); EXPECT_EQ(Vector3dF(3.5f, 5.5f, 7.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(3.5f, 5.5f, 7.5f)); EXPECT_EQ(Vector3dF(3.5f, 5.5f, 7.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(4.5f, 2, 6.5f)); EXPECT_EQ(Vector3dF(4.5f, 5.5f, 7.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(3.5f, 6.5f, 6.5f)); EXPECT_EQ(Vector3dF(4.5f, 6.5f, 7.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(3.5f, 5.5f, 8.5f)); EXPECT_EQ(Vector3dF(4.5f, 6.5f, 8.5f).ToString(), a.ToString()); a.SetToMax(Vector3dF(8.5f, 10.5f, 12.5f)); EXPECT_EQ(Vector3dF(8.5f, 10.5f, 12.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(9.5f, 11.5f, 13.5f)); EXPECT_EQ(Vector3dF(8.5f, 10.5f, 12.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(8.5f, 10.5f, 12.5f)); EXPECT_EQ(Vector3dF(8.5f, 10.5f, 12.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(7.5f, 11.5f, 13.5f)); EXPECT_EQ(Vector3dF(7.5f, 10.5f, 12.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(9.5f, 9.5f, 13.5f)); EXPECT_EQ(Vector3dF(7.5f, 9.5f, 12.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(9.5f, 11.5f, 11.5f)); EXPECT_EQ(Vector3dF(7.5f, 9.5f, 11.5f).ToString(), a.ToString()); a.SetToMin(Vector3dF(3.5f, 5.5f, 7.5f)); EXPECT_EQ(Vector3dF(3.5f, 5.5f, 7.5f).ToString(), a.ToString()); } TEST(Vector3dTest, AngleBetweenVectorsInDegress) { const struct { float expected; gfx::Vector3dF input1; gfx::Vector3dF input2; } tests[] = { {0, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 1, 0)}, {90, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 0, 1)}, {45, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 0.70710678188f, 0.70710678188f)}, {180, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, -1, 0)}, }; for (size_t i = 0; i < arraysize(tests); ++i) { float actual = gfx::AngleBetweenVectorsInDegrees(tests[i].input1, tests[i].input2); EXPECT_FLOAT_EQ(tests[i].expected, actual); actual = gfx::AngleBetweenVectorsInDegrees(tests[i].input2, tests[i].input1); EXPECT_FLOAT_EQ(tests[i].expected, actual); } } TEST(Vector3dTest, ClockwiseAngleBetweenVectorsInDegress) { const struct { float expected; gfx::Vector3dF input1; gfx::Vector3dF input2; } tests[] = { {0, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 1, 0)}, {90, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 0, -1)}, {45, gfx::Vector3dF(0, -1, 0), gfx::Vector3dF(0, -0.70710678188f, 0.70710678188f)}, {180, gfx::Vector3dF(0, -1, 0), gfx::Vector3dF(0, 1, 0)}, {270, gfx::Vector3dF(0, 1, 0), gfx::Vector3dF(0, 0, 1)}, }; const gfx::Vector3dF normal_vector(1.0f, 0.0f, 0.0f); for (size_t i = 0; i < arraysize(tests); ++i) { float actual = gfx::ClockwiseAngleBetweenVectorsInDegrees( tests[i].input1, tests[i].input2, normal_vector); EXPECT_FLOAT_EQ(tests[i].expected, actual); actual = -gfx::ClockwiseAngleBetweenVectorsInDegrees( tests[i].input2, tests[i].input1, normal_vector); if (actual < 0.0f) actual += 360.0f; EXPECT_FLOAT_EQ(tests[i].expected, actual); } } TEST(Vector3dTest, GetNormalized) { const struct { bool expected; gfx::Vector3dF v; gfx::Vector3dF normalized; } tests[] = { {false, gfx::Vector3dF(0, 0, 0), gfx::Vector3dF(0, 0, 0)}, {false, gfx::Vector3dF(std::numeric_limits::min(), std::numeric_limits::min(), std::numeric_limits::min()), gfx::Vector3dF(std::numeric_limits::min(), std::numeric_limits::min(), std::numeric_limits::min())}, {true, gfx::Vector3dF(1, 0, 0), gfx::Vector3dF(1, 0, 0)}, {true, gfx::Vector3dF(std::numeric_limits::max(), 0, 0), gfx::Vector3dF(1, 0, 0)}, }; for (size_t i = 0; i < arraysize(tests); ++i) { gfx::Vector3dF n; EXPECT_EQ(tests[i].expected, tests[i].v.GetNormalized(&n)); EXPECT_EQ(tests[i].normalized.ToString(), n.ToString()); } } } // namespace gfx