/****************************************************************************** * * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ***************************************************************************** * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore */ /** ****************************************************************************** * @file hme_search_algo.c * * @brief * Contains various search algorithms to be used by coarse/refinement layers * * @author * Ittiam * * * List of Functions * hme_compute_grid_results_step_gt_1() * hme_compute_grid_results_step_1() * hme_pred_search_square_stepn() * ****************************************************************************** */ /*****************************************************************************/ /* File Includes */ /*****************************************************************************/ /* System include files */ #include #include #include #include #include #include #include /* User include files */ #include "ihevc_typedefs.h" #include "itt_video_api.h" #include "ihevce_api.h" #include "rc_cntrl_param.h" #include "rc_frame_info_collector.h" #include "rc_look_ahead_params.h" #include "ihevc_defs.h" #include "ihevc_structs.h" #include "ihevc_platform_macros.h" #include "ihevc_deblk.h" #include "ihevc_itrans_recon.h" #include "ihevc_chroma_itrans_recon.h" #include "ihevc_chroma_intra_pred.h" #include "ihevc_intra_pred.h" #include "ihevc_inter_pred.h" #include "ihevc_mem_fns.h" #include "ihevc_padding.h" #include "ihevc_weighted_pred.h" #include "ihevc_sao.h" #include "ihevc_resi_trans.h" #include "ihevc_quant_iquant_ssd.h" #include "ihevc_cabac_tables.h" #include "ihevce_defs.h" #include "ihevce_lap_enc_structs.h" #include "ihevce_multi_thrd_structs.h" #include "ihevce_multi_thrd_funcs.h" #include "ihevce_me_common_defs.h" #include "ihevce_had_satd.h" #include "ihevce_error_codes.h" #include "ihevce_bitstream.h" #include "ihevce_cabac.h" #include "ihevce_rdoq_macros.h" #include "ihevce_function_selector.h" #include "ihevce_enc_structs.h" #include "ihevce_entropy_structs.h" #include "ihevce_cmn_utils_instr_set_router.h" #include "ihevce_enc_loop_structs.h" #include "ihevce_bs_compute_ctb.h" #include "ihevce_global_tables.h" #include "ihevce_dep_mngr_interface.h" #include "hme_datatype.h" #include "hme_interface.h" #include "hme_common_defs.h" #include "hme_defs.h" #include "ihevce_me_instr_set_router.h" #include "hme_globals.h" #include "hme_utils.h" #include "hme_coarse.h" #include "hme_fullpel.h" #include "hme_subpel.h" #include "hme_refine.h" #include "hme_err_compute.h" #include "hme_common_utils.h" #include "hme_search_algo.h" #include "ihevce_stasino_helpers.h" #include "ihevce_common_utils.h" /*****************************************************************************/ /* Function Definitions */ /*****************************************************************************/ /** ******************************************************************************** * @fn void hme_compute_grid_results_step_1(err_prms_t *ps_err_prms, result_upd_prms_t *ps_result_prms, BLK_SIZE_T e_blk_size) * * @brief Updates results for a grid of step = 1 * * @param[in] ps_err_prms: Various parameters to this function * * @param[in] ps_result_prms : Parameters pertaining to result updation * * @param[out] e_blk_size: Block size of the blk being searched for * * @return none ******************************************************************************** */ void hme_compute_grid_results( err_prms_t *ps_err_prms, result_upd_prms_t *ps_result_prms, BLK_SIZE_T e_blk_size) { PF_RESULT_FXN_T pf_hme_result_fxn; PF_SAD_FXN_T pf_sad_fxn; S32 i4_num_results; S32 part_id; part_id = ps_result_prms->pi4_valid_part_ids[0]; i4_num_results = (S32)ps_result_prms->ps_search_results->u1_num_results_per_part; pf_sad_fxn = hme_get_sad_fxn(e_blk_size, ps_err_prms->i4_grid_mask, ps_err_prms->i4_part_mask); pf_hme_result_fxn = hme_get_result_fxn(ps_err_prms->i4_grid_mask, ps_err_prms->i4_part_mask, i4_num_results); pf_sad_fxn(ps_err_prms); pf_hme_result_fxn(ps_result_prms); } /** ******************************************************************************** * @fn void hme_pred_search_square_stepn(hme_search_prms_t *ps_search_prms, * layer_ctxt_t *ps_layer_ctxt) * * @brief Implements predictive search, with square grid refinement. In this * case, we start with a bigger step size, like 4, refining upto a * variable number of pts, till we hit end of search range or hit a * minima. Then we refine using smaller steps. The bigger step size * like 4 or 2, do not use optimized SAD functions, they evaluate * SAD for each individual pt. * * @param[in,out] ps_search_prms: All the params to this function * * @param[in] ps_layer_ctxt: Context for the layer * * @return None ******************************************************************************** */ void hme_pred_search_square_stepn( hme_search_prms_t *ps_search_prms, layer_ctxt_t *ps_layer_ctxt, wgt_pred_ctxt_t *ps_wt_inp_prms, ME_QUALITY_PRESETS_T e_me_quality_preset, ihevce_me_optimised_function_list_t *ps_me_optimised_function_list ) { /* Stores the SAD for all parts at each pt in the grid */ S32 ai4_sad_grid[9][TOT_NUM_PARTS]; S32 ai4_valid_part_ids[TOT_NUM_PARTS + 1]; /* Atributes of input candidates */ search_candt_t *ps_search_candts; search_node_t s_search_node; /* Number of candidates to search */ S32 i4_num_candts, max_num_iters, i4_num_results; /* Input and reference attributes */ S32 i4_inp_stride, i4_ref_stride, i4_ref_offset; /* The reference is actually an array of ptrs since there are several */ /* reference id. So an array gets passed form calling function */ U08 **ppu1_ref; /* Holds the search results at the end of this fxn */ search_results_t *ps_search_results; /* These control number of parts and number of pts in grid to search */ S32 i4_part_mask, i4_grid_mask; /* Blk width, blk height and blk size are derived from input params */ BLK_SIZE_T e_blk_size; CU_SIZE_T e_cu_size; S32 i4_blk_wd, i4_blk_ht, i4_step, i4_candt, i4_iter; S32 i4_inp_off; S32 i4_min_id; /* Points to the range limits for mv */ range_prms_t *ps_range_prms; /*************************************************************************/ /* These functions pointers for calculating Err and the result update */ /* Each carries its own parameters structure, which is generated on the */ /* fly in this function */ /*************************************************************************/ err_prms_t s_err_prms; result_upd_prms_t s_result_prms; max_num_iters = ps_search_prms->i4_max_iters; /* Using the member 0 to store for all ref. idx., see in coarsest */ ps_range_prms = ps_search_prms->aps_mv_range[0]; i4_inp_stride = ps_search_prms->i4_inp_stride; /* Move to the location of the search blk in inp buffer */ i4_inp_off = ps_search_prms->i4_cu_x_off; i4_inp_off += (ps_search_prms->i4_cu_y_off * i4_inp_stride); ps_search_results = ps_search_prms->ps_search_results; /*************************************************************************/ /* Depending on flag i4_use_rec, we use either input of previously */ /* encoded pictures or we use recon of previously encoded pictures. */ /*************************************************************************/ if(ps_search_prms->i4_use_rec == 1) { i4_ref_stride = ps_layer_ctxt->i4_rec_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy; } else { i4_ref_stride = ps_layer_ctxt->i4_inp_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_inp; } i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off; /*************************************************************************/ /* Obtain the blk size of the search blk. Assumed here that the search */ /* is done on a CU size, rather than any arbitrary blk size. */ /*************************************************************************/ ps_search_results = ps_search_prms->ps_search_results; e_blk_size = ps_search_prms->e_blk_size; i4_blk_wd = (S32)gau1_blk_size_to_wd[e_blk_size]; i4_blk_ht = (S32)gau1_blk_size_to_ht[e_blk_size]; e_cu_size = ps_search_results->e_cu_size; i4_num_results = (S32)ps_search_results->u1_num_results_per_part; ps_search_candts = ps_search_prms->ps_search_candts; i4_num_candts = ps_search_prms->i4_num_init_candts; i4_part_mask = ps_search_prms->i4_part_mask; /*************************************************************************/ /* This array stores the ids of the partitions whose */ /* SADs are updated. Since the partitions whose SADs are updated may not */ /* be in contiguous order, we supply another level of indirection. */ /*************************************************************************/ hme_create_valid_part_ids(i4_part_mask, ai4_valid_part_ids); /* Update the parameters used to pass to SAD */ /* input ptr, strides, SAD Grid, part mask, blk width and ht */ /* The above are fixed ptrs, only pu1_ref and grid mask are */ /* varying params which are updated just before calling fxn */ s_err_prms.i4_inp_stride = i4_inp_stride; s_err_prms.i4_ref_stride = i4_ref_stride; s_err_prms.i4_part_mask = i4_part_mask; s_err_prms.pi4_sad_grid = &ai4_sad_grid[0][0]; s_err_prms.i4_blk_wd = i4_blk_wd; s_err_prms.i4_blk_ht = i4_blk_ht; s_err_prms.pi4_valid_part_ids = ai4_valid_part_ids; s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute; s_result_prms.ps_search_results = ps_search_results; s_result_prms.pi4_valid_part_ids = ai4_valid_part_ids; s_result_prms.i1_ref_idx = ps_search_prms->i1_ref_idx; s_result_prms.i4_part_mask = ps_search_prms->i4_part_mask; s_result_prms.ps_search_node_base = &s_search_node; s_result_prms.pi4_sad_grid = &ai4_sad_grid[0][0]; /* Run through each of the candts in a loop */ for(i4_candt = 0; i4_candt < i4_num_candts; i4_candt++) { S32 i4_num_refine; i4_step = ps_search_prms->i4_start_step; s_search_node = *(ps_search_candts->ps_search_node); /* initialize minimum cost for this candidate. As we search around */ /* this candidate, this is used to check early exit, when in any */ /* given iteration, the center pt of the grid is lowest value */ s_result_prms.i4_min_cost = MAX_32BIT_VAL; /* If we need to do refinements, then we need to evaluate */ /* neighbouring pts. Before doing so, we have to do */ /* basic range checks against max allowed mvs */ i4_num_refine = ps_search_candts->u1_num_steps_refine; CLIP_MV_WITHIN_RANGE( s_search_node.s_mv.i2_mvx, s_search_node.s_mv.i2_mvy, ps_range_prms, 0, 0, 0); /* The first time, we search all 8 pts around init candt plus the init candt */ i4_grid_mask = 0x1ff; s_err_prms.pu1_inp = ps_wt_inp_prms->apu1_wt_inp[s_search_node.i1_ref_idx] + i4_inp_off; for(i4_iter = 0; i4_iter < max_num_iters; i4_iter++) { i4_grid_mask &= hme_clamp_grid_by_mvrange(&s_search_node, i4_step, ps_range_prms); s_err_prms.i4_grid_mask = i4_grid_mask; s_err_prms.pu1_ref = ppu1_ref[s_search_node.i1_ref_idx] + i4_ref_offset; s_err_prms.pu1_ref += (s_search_node.s_mv.i2_mvx + (s_search_node.s_mv.i2_mvy * s_err_prms.i4_ref_stride)); s_result_prms.i4_step = i4_step; s_err_prms.i4_step = i4_step; s_result_prms.i4_grid_mask = i4_grid_mask; /* For Top,TopLeft and Left cand., get only center point SAD */ /* and do early exit */ if(0 == i4_num_refine) { s_err_prms.i4_grid_mask = 0x1; s_result_prms.i4_grid_mask = 0x1; /* sad pt fun. populates sad to 0th location, whereas update */ /* fun. takes it based on part. id */ s_err_prms.pi4_sad_grid = s_result_prms.pi4_sad_grid + (1 * s_result_prms.pi4_valid_part_ids[0]); ps_me_optimised_function_list->pf_evalsad_pt_npu_mxn_8bit(&s_err_prms); s_err_prms.pi4_sad_grid = s_result_prms.pi4_sad_grid; if(ME_XTREME_SPEED_25 == e_me_quality_preset) hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms); else hme_update_results_grid_pu_bestn(&s_result_prms); i4_min_id = (S32)PT_C; /* Center Point */ i4_step = 0; /* No further refinment */ s_result_prms.i4_step = i4_step; s_err_prms.i4_step = i4_step; } else { if(ME_XTREME_SPEED_25 == e_me_quality_preset) { err_prms_t *ps_err_prms = &s_err_prms; ASSERT(ps_err_prms->i4_grid_mask != 1); ASSERT((ps_err_prms->i4_part_mask == 4) || (ps_err_prms->i4_part_mask == 16)); /*****************************************************************/ /* In this case, there are no partial updates. The blk can be */ /* of any type and need not be a CU. The only thing that matters */ /* here is the width of the blk, 4/8/(>=16) */ /*****************************************************************/ ps_me_optimised_function_list->pf_evalsad_grid_npu_MxN(&s_err_prms); hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms); } else { /* Obtain SAD for all 9 pts in grid*/ hme_compute_grid_results(&s_err_prms, &s_result_prms, e_blk_size); } /* Early exit in case of centre being local minima */ i4_min_id = s_result_prms.i4_min_id; } i4_grid_mask = gai4_opt_grid_mask[i4_min_id]; s_search_node.s_mv.i2_mvx += (i4_step * gai1_grid_id_to_x[i4_min_id]); s_search_node.s_mv.i2_mvy += (i4_step * gai1_grid_id_to_y[i4_min_id]); if(i4_min_id == (S32)PT_C) break; } /* Next keep reducing stepsize by factor of 2 */ i4_step >>= 1; while(i4_step) { i4_grid_mask = 0x1fe & hme_clamp_grid_by_mvrange(&s_search_node, i4_step, ps_range_prms); //i4_grid_mask &= 0x1fe; s_err_prms.i4_grid_mask = i4_grid_mask; s_result_prms.i4_grid_mask = i4_grid_mask; s_err_prms.i4_step = i4_step; s_result_prms.i4_step = i4_step; s_err_prms.pu1_ref = ppu1_ref[s_search_node.i1_ref_idx] + i4_ref_offset; s_err_prms.pu1_ref += (s_search_node.s_mv.i2_mvx + (s_search_node.s_mv.i2_mvy * s_err_prms.i4_ref_stride)); if(ME_XTREME_SPEED_25 == e_me_quality_preset) { err_prms_t *ps_err_prms = &s_err_prms; ASSERT(ps_err_prms->i4_grid_mask != 1); ASSERT((ps_err_prms->i4_part_mask == 4) || (ps_err_prms->i4_part_mask == 16)); /*****************************************************************/ /* In this case, there are no partial updates. The blk can be */ /* of any type and need not be a CU. The only thing that matters */ /* here is the width of the blk, 4/8/(>=16) */ /*****************************************************************/ ps_me_optimised_function_list->pf_evalsad_grid_npu_MxN(&s_err_prms); hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms); } else { hme_compute_grid_results(&s_err_prms, &s_result_prms, e_blk_size); } i4_min_id = s_result_prms.i4_min_id; s_search_node.s_mv.i2_mvx += (i4_step * gai1_grid_id_to_x[i4_min_id]); s_search_node.s_mv.i2_mvy += (i4_step * gai1_grid_id_to_y[i4_min_id]); i4_step >>= 1; } ps_search_candts++; } } /** ******************************************************************************** * @fn hme_pred_search_square_step1(hme_search_prms_t *ps_search_prms, * layer_ctxt_t *ps_layer_ctxt) * * @brief Implements predictive search with square grid refinement. In this * case, the square grid is of step 1 always. since this is considered * to be more of a refinement search * * @param[in,out] ps_search_prms: All the params to this function * * @param[in] ps_layer_ctxt: All info about this layer * * @return None ******************************************************************************** */ /** ******************************************************************************** * @fn hme_pred_search(hme_search_prms_t *ps_search_prms, * layer_ctxt_t *ps_layer_ctxt) * * @brief Implements predictive search after removing duplicate candidates * from initial list. Each square grid (of step 1) is expanded * to nine search pts before the dedeuplication process. one point * cost is then evaluated for each unique node after the deduplication * process * * @param[in,out] ps_search_prms: All the params to this function * * @param[in] ps_layer_ctxt: All info about this layer * * @return None ******************************************************************************** */ void hme_pred_search( hme_search_prms_t *ps_search_prms, layer_ctxt_t *ps_layer_ctxt, wgt_pred_ctxt_t *ps_wt_inp_prms, S08 i1_grid_flag, ihevce_me_optimised_function_list_t *ps_me_optimised_function_list ) { /* Stores the SAD for all parts at each pt in the grid */ S32 ai4_sad_grid[9 * TOT_NUM_PARTS]; /* Atributes of input candidates */ search_node_t *ps_search_node; search_results_t *ps_search_results; S32 i4_num_nodes, i4_candt; /* Input and reference attributes */ S32 i4_inp_stride, i4_ref_stride, i4_ref_offset; /* The reference is actually an array of ptrs since there are several */ /* reference id. So an array gets passed form calling function */ U08 **ppu1_ref; /* These control number of parts and number of pts in grid to search */ S32 i4_part_mask, i4_grid_mask; S32 shift_for_cu_size; /* Blk width, blk height and blk size are derived from input params */ BLK_SIZE_T e_blk_size; CU_SIZE_T e_cu_size; S32 i4_blk_wd, i4_blk_ht; /*************************************************************************/ /* These functions pointers for calculating Err and the result update */ /* Each carries its own parameters structure, which is generated on the */ /* fly in this function */ /*************************************************************************/ PF_RESULT_FXN_T pf_hme_result_fxn; PF_SAD_FXN_T pf_sad_fxn; PF_CALC_SAD_AND_RESULT pf_calc_sad_and_result; err_prms_t s_err_prms; result_upd_prms_t s_result_prms; S32 i4_num_results; S32 i4_inp_off; fullpel_refine_ctxt_t *ps_fullpel_refine_ctxt = ps_search_prms->ps_fullpel_refine_ctxt; i4_inp_stride = ps_search_prms->i4_inp_stride; /* Move to the location of the search blk in inp buffer */ i4_inp_off = ps_search_prms->i4_cu_x_off; i4_inp_off += ps_search_prms->i4_cu_y_off * i4_inp_stride; /*************************************************************************/ /* Depending on flag i4_use_rec, we use either input of previously */ /* encoded pictures or we use recon of previously encoded pictures. */ /*************************************************************************/ if(ps_search_prms->i4_use_rec == 1) { i4_ref_stride = ps_layer_ctxt->i4_rec_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy; } else { i4_ref_stride = ps_layer_ctxt->i4_rec_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_inp; } i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off; /* Obtain the blk size of the search blk. Assumed here that the search */ /* is done on a CU size, rather than any arbitrary blk size. */ ps_search_results = ps_search_prms->ps_search_results; e_blk_size = ps_search_prms->e_blk_size; i4_blk_wd = gau1_blk_size_to_wd[e_blk_size]; i4_blk_ht = gau1_blk_size_to_ht[e_blk_size]; e_cu_size = ps_search_results->e_cu_size; /* Assuming cu size of 8x8 as enum 0, the other will be 1, 2, 3 */ /* This will also set the shift w.r.t. the base cu size of 8x8 */ shift_for_cu_size = e_cu_size; ps_search_node = ps_search_prms->ps_search_nodes; i4_num_nodes = ps_search_prms->i4_num_search_nodes; i4_part_mask = ps_search_prms->i4_part_mask; /* Update the parameters used to pass to SAD */ /* input ptr, strides, SAD Grid, part mask, blk width and ht */ /* The above are fixed ptrs, only pu1_ref and grid mask are */ /* varying params which are updated just before calling fxn */ s_err_prms.i4_inp_stride = i4_inp_stride; s_err_prms.i4_ref_stride = i4_ref_stride; s_err_prms.i4_part_mask = i4_part_mask; s_err_prms.pi4_sad_grid = &ai4_sad_grid[0]; s_err_prms.i4_blk_wd = i4_blk_wd; s_err_prms.i4_blk_ht = i4_blk_ht; s_err_prms.i4_step = 1; s_err_prms.i4_num_partitions = ps_fullpel_refine_ctxt->i4_num_valid_parts; s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute; s_result_prms.ps_search_results = ps_search_results; s_result_prms.i1_ref_idx = (S08)ps_search_prms->i1_ref_idx; s_result_prms.pi4_sad_grid = ai4_sad_grid; s_result_prms.i4_part_mask = i4_part_mask; s_result_prms.i4_step = 1; pf_calc_sad_and_result = hme_get_calc_sad_and_result_fxn( i1_grid_flag, ps_search_prms->u1_is_cu_noisy, i4_part_mask, ps_fullpel_refine_ctxt->i4_num_valid_parts, ps_search_results->u1_num_results_per_part); pf_calc_sad_and_result( ps_search_prms, ps_wt_inp_prms, &s_err_prms, &s_result_prms, ppu1_ref, i4_ref_stride); } static __inline FT_CALC_SAD_AND_RESULT *hme_get_calc_sad_and_result_explicit_fxn( ihevce_me_optimised_function_list_t *ps_me_optimised_function_list, S32 i4_part_mask, S32 i4_num_partitions, S08 i1_grid_enable, U08 u1_num_results_per_part) { FT_CALC_SAD_AND_RESULT *pf_func = NULL; if(2 == u1_num_results_per_part) { if(i4_part_mask == 1) { ASSERT(i4_num_partitions == 1); if(i1_grid_enable == 0) { pf_func = ps_me_optimised_function_list->pf_calc_pt_sad_and_2_best_results_explicit_8x8; } else { pf_func = ps_me_optimised_function_list ->pf_calc_pt_sad_and_2_best_results_explicit_8x8_for_grid; } } else { ASSERT(i4_num_partitions == 5); pf_func = ps_me_optimised_function_list->pf_calc_pt_sad_and_2_best_results_explicit_8x8_4x4; } } else if(1 == u1_num_results_per_part) { if(i4_part_mask == 1) { ASSERT(i4_num_partitions == 1); if(i1_grid_enable == 0) { pf_func = ps_me_optimised_function_list->pf_calc_pt_sad_and_1_best_result_explicit_8x8; } else { pf_func = ps_me_optimised_function_list ->pf_calc_pt_sad_and_1_best_result_explicit_8x8_for_grid; } } else { ASSERT(i4_num_partitions == 5); pf_func = ps_me_optimised_function_list->pf_calc_pt_sad_and_1_best_result_explicit_8x8_4x4; } } return pf_func; } /** ******************************************************************************** * @fn void hme_pred_search_no_encode(hme_search_prms_t *ps_search_prms, * layer_ctxt_t *ps_layer_ctxt, * wgt_pred_ctxt_t *ps_wt_inp_prms, * S32 *pi4_valid_part_ids, * S32 disable_refine, * ME_QUALITY_PRESETS_T e_me_quality_preset) * * @brief Implements predictive search after removing duplicate candidates * from initial list. Each square grid (of step 1) is expanded * to nine search pts before the dedeuplication process. one point * cost is then evaluated for each unique node after the deduplication * process * * @param[in,out] ps_search_prms: All the params to this function * * @param[in] ps_layer_ctxt: All info about this layer * * @return None ******************************************************************************** */ void hme_pred_search_no_encode( hme_search_prms_t *ps_search_prms, layer_ctxt_t *ps_layer_ctxt, wgt_pred_ctxt_t *ps_wt_inp_prms, S32 *pi4_valid_part_ids, S32 disable_refine, ME_QUALITY_PRESETS_T e_me_quality_preset, S08 i1_grid_enable, ihevce_me_optimised_function_list_t *ps_me_optimised_function_list) { /* Stores the SAD for all parts at each pt in the grid */ S32 ai4_sad_grid[9 * TOT_NUM_PARTS]; /* Atributes of input candidates */ search_node_t *ps_search_node; search_results_t *ps_search_results; S32 i4_num_nodes; /* Input and reference attributes */ S32 i4_inp_stride, i4_ref_stride, i4_ref_offset; /* The reference is actually an array of ptrs since there are several */ /* reference id. So an array gets passed form calling function */ U08 **ppu1_ref; /* These control number of parts and number of pts in grid to search */ S32 i4_part_mask; // i4_grid_mask; S32 shift_for_cu_size; /* Blk width, blk height and blk size are derived from input params */ BLK_SIZE_T e_blk_size; CU_SIZE_T e_cu_size; S32 i4_blk_wd, i4_blk_ht; /*************************************************************************/ /* These functions pointers for calculating Err and the result update */ /* Each carries its own parameters structure, which is generated on the */ /* fly in this function */ /*************************************************************************/ PF_CALC_SAD_AND_RESULT pf_calc_sad_and_result; err_prms_t s_err_prms; result_upd_prms_t s_result_prms; S32 i4_num_results; S32 i4_search_idx = ps_search_prms->i1_ref_idx; S32 i4_inp_off; S32 i4_num_partitions; i4_inp_stride = ps_search_prms->i4_inp_stride; /* Move to the location of the search blk in inp buffer */ i4_inp_off = ps_search_prms->i4_cu_x_off; i4_inp_off += ps_search_prms->i4_cu_y_off * i4_inp_stride; /*************************************************************************/ /* Depending on flag i4_use_rec, we use either input of previously */ /* encoded pictures or we use recon of previously encoded pictures. */ /*************************************************************************/ if(ps_search_prms->i4_use_rec == 1) { i4_ref_stride = ps_layer_ctxt->i4_rec_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy; } else { i4_ref_stride = ps_layer_ctxt->i4_inp_stride; ppu1_ref = ps_layer_ctxt->ppu1_list_inp; } i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off; /* Obtain the blk size of the search blk. Assumed here that the search */ /* is done on a CU size, rather than any arbitrary blk size. */ ps_search_results = ps_search_prms->ps_search_results; e_blk_size = ps_search_prms->e_blk_size; i4_blk_wd = gau1_blk_size_to_wd[e_blk_size]; i4_blk_ht = gau1_blk_size_to_ht[e_blk_size]; e_cu_size = ps_search_results->e_cu_size; /* Assuming cu size of 8x8 as enum 0, the other will be 1, 2, 3 */ /* This will also set the shift w.r.t. the base cu size of 8x8 */ shift_for_cu_size = e_cu_size; ps_search_node = ps_search_prms->ps_search_nodes; i4_num_nodes = ps_search_prms->i4_num_search_nodes; i4_part_mask = ps_search_prms->i4_part_mask; /*************************************************************************/ /* This array stores the ids of the partitions whose */ /* SADs are updated. Since the partitions whose SADs are updated may not */ /* be in contiguous order, we supply another level of indirection. */ /*************************************************************************/ i4_num_partitions = hme_create_valid_part_ids(i4_part_mask, pi4_valid_part_ids); /* Update the parameters used to pass to SAD */ /* input ptr, strides, SAD Grid, part mask, blk width and ht */ /* The above are fixed ptrs, only pu1_ref and grid mask are */ /* varying params which are updated just before calling fxn */ s_err_prms.i4_inp_stride = i4_inp_stride; s_err_prms.i4_ref_stride = i4_ref_stride; s_err_prms.i4_part_mask = i4_part_mask; s_err_prms.pi4_sad_grid = &ai4_sad_grid[0]; s_err_prms.i4_blk_wd = i4_blk_wd; s_err_prms.i4_blk_ht = i4_blk_ht; s_err_prms.i4_step = 1; s_err_prms.pi4_valid_part_ids = pi4_valid_part_ids; s_err_prms.i4_num_partitions = i4_num_partitions; s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute; s_result_prms.ps_search_results = ps_search_results; s_result_prms.pi4_valid_part_ids = pi4_valid_part_ids; s_result_prms.i1_ref_idx = (S08)ps_search_prms->i1_ref_idx; s_result_prms.pi4_sad_grid = ai4_sad_grid; s_result_prms.i4_part_mask = i4_part_mask; s_result_prms.i4_step = 1; pf_calc_sad_and_result = hme_get_calc_sad_and_result_explicit_fxn( ps_me_optimised_function_list, i4_part_mask, i4_num_partitions, i1_grid_enable, ps_search_results->u1_num_results_per_part); pf_calc_sad_and_result( ps_search_prms, ps_wt_inp_prms, &s_err_prms, &s_result_prms, ppu1_ref, i4_ref_stride); }