; ; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2) ; ; Copyright (C) 2009-2011, 2014-2016, 2019, D. R. Commander. ; Copyright (C) 2015, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation for Huffman coding of one block. ; The following code is based on jchuff.c; see jchuff.c for more details. %include "jsimdext.inc" struc working_state .next_output_byte: resp 1 ; => next byte to write in buffer .free_in_buffer: resp 1 ; # of byte spaces remaining in buffer .cur.put_buffer.simd resq 1 ; current bit accumulation buffer .cur.free_bits resd 1 ; # of bits available in it .cur.last_dc_val resd 4 ; last DC coef for each component .cinfo: resp 1 ; dump_buffer needs access to this endstruc struc c_derived_tbl .ehufco: resd 256 ; code for each symbol .ehufsi: resb 256 ; length of code for each symbol ; If no code has been allocated for a symbol S, ehufsi[S] contains 0 endstruc ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_huff_encode_one_block) EXTN(jconst_huff_encode_one_block): jpeg_mask_bits dd 0x0000, 0x0001, 0x0003, 0x0007 dd 0x000f, 0x001f, 0x003f, 0x007f dd 0x00ff, 0x01ff, 0x03ff, 0x07ff dd 0x0fff, 0x1fff, 0x3fff, 0x7fff alignz 32 times 1 << 14 db 15 times 1 << 13 db 14 times 1 << 12 db 13 times 1 << 11 db 12 times 1 << 10 db 11 times 1 << 9 db 10 times 1 << 8 db 9 times 1 << 7 db 8 times 1 << 6 db 7 times 1 << 5 db 6 times 1 << 4 db 5 times 1 << 3 db 4 times 1 << 2 db 3 times 1 << 1 db 2 times 1 << 0 db 1 times 1 db 0 jpeg_nbits_table: times 1 db 0 times 1 << 0 db 1 times 1 << 1 db 2 times 1 << 2 db 3 times 1 << 3 db 4 times 1 << 4 db 5 times 1 << 5 db 6 times 1 << 6 db 7 times 1 << 7 db 8 times 1 << 8 db 9 times 1 << 9 db 10 times 1 << 10 db 11 times 1 << 11 db 12 times 1 << 12 db 13 times 1 << 13 db 14 times 1 << 14 db 15 alignz 32 %define NBITS(x) nbits_base + x %define MASK_BITS(x) NBITS((x) * 4) + (jpeg_mask_bits - jpeg_nbits_table) ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; Shorthand used to describe SIMD operations: ; wN: xmmN treated as eight signed 16-bit values ; wN[i]: perform the same operation on all eight signed 16-bit values, i=0..7 ; bN: xmmN treated as 16 unsigned 8-bit values ; bN[i]: perform the same operation on all 16 unsigned 8-bit values, i=0..15 ; Contents of SIMD registers are shown in memory order. ; Fill the bit buffer to capacity with the leading bits from code, then output ; the bit buffer and put the remaining bits from code into the bit buffer. ; ; Usage: ; code - contains the bits to shift into the bit buffer (LSB-aligned) ; %1 - the label to which to jump when the macro completes ; %2 (optional) - extra instructions to execute after nbits has been set ; ; Upon completion, free_bits will be set to the number of remaining bits from ; code, and put_buffer will contain those remaining bits. temp and code will ; be clobbered. ; ; This macro encodes any 0xFF bytes as 0xFF 0x00, as does the EMIT_BYTE() ; macro in jchuff.c. %macro EMIT_QWORD 1-2 add nbitsb, free_bitsb ; nbits += free_bits; neg free_bitsb ; free_bits = -free_bits; mov tempd, code ; temp = code; shl put_buffer, nbitsb ; put_buffer <<= nbits; mov nbitsb, free_bitsb ; nbits = free_bits; neg free_bitsb ; free_bits = -free_bits; shr tempd, nbitsb ; temp >>= nbits; or tempq, put_buffer ; temp |= put_buffer; movq xmm0, tempq ; xmm0.u64 = { temp, 0 }; bswap tempq ; temp = htonl(temp); mov put_buffer, codeq ; put_buffer = code; pcmpeqb xmm0, xmm1 ; b0[i] = (b0[i] == 0xFF ? 0xFF : 0); %2 pmovmskb code, xmm0 ; code = 0; code |= ((b0[i] >> 7) << i); mov qword [buffer], tempq ; memcpy(buffer, &temp, 8); ; (speculative; will be overwritten if ; code contains any 0xFF bytes) add free_bitsb, 64 ; free_bits += 64; add bufferp, 8 ; buffer += 8; test code, code ; if (code == 0) /* No 0xFF bytes */ jz %1 ; return; ; Execute the equivalent of the EMIT_BYTE() macro in jchuff.c for all 8 ; bytes in the qword. cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer-7], 0 ; buffer[-7] = 0; sbb bufferp, 6 ; buffer -= (6 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempq, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempq, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempd, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); jmp %1 ; return; %endmacro ; ; Encode a single block's worth of coefficients. ; ; GLOBAL(JOCTET *) ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, ; JCOEFPTR block, int last_dc_val, ; c_derived_tbl *dctbl, c_derived_tbl *actbl) ; ; NOTES: ; When shuffling data, we try to avoid pinsrw as much as possible, since it is ; slow on many CPUs. Its reciprocal throughput (issue latency) is 1 even on ; modern CPUs, so chains of pinsrw instructions (even with different outputs) ; can limit performance. pinsrw is a VectorPath instruction on AMD K8 and ; requires 2 µops (with memory operand) on Intel. In either case, only one ; pinsrw instruction can be decoded per cycle (and nothing else if they are ; back-to-back), so out-of-order execution cannot be used to work around long ; pinsrw chains (though for Sandy Bridge and later, this may be less of a ; problem if the code runs from the µop cache.) ; ; We use tzcnt instead of bsf without checking for support. The instruction is ; executed as bsf on CPUs that don't support tzcnt (encoding is equivalent to ; rep bsf.) The destination (first) operand of bsf (and tzcnt on some CPUs) is ; an input dependency (although the behavior is not formally defined, Intel ; CPUs usually leave the destination unmodified if the source is zero.) This ; can prevent out-of-order execution, so we clear the destination before ; invoking tzcnt. ; ; Initial register allocation ; rax - buffer ; rbx - temp ; rcx - nbits ; rdx - block --> free_bits ; rsi - nbits_base ; rdi - t ; rbp - code ; r8 - dctbl --> code_temp ; r9 - actbl ; r10 - state ; r11 - index ; r12 - put_buffer %define buffer rax %ifdef WIN64 %define bufferp rax %else %define bufferp raxp %endif %define tempq rbx %define tempd ebx %define tempb bl %define temph bh %define nbitsq rcx %define nbits ecx %define nbitsb cl %define block rdx %define nbits_base rsi %define t rdi %define td edi %define codeq rbp %define code ebp %define dctbl r8 %define actbl r9 %define state r10 %define index r11 %define indexd r11d %define put_buffer r12 %define put_bufferd r12d ; Step 1: Re-arrange input data according to jpeg_natural_order ; xx 01 02 03 04 05 06 07 xx 01 08 16 09 02 03 10 ; 08 09 10 11 12 13 14 15 17 24 32 25 18 11 04 05 ; 16 17 18 19 20 21 22 23 12 19 26 33 40 48 41 34 ; 24 25 26 27 28 29 30 31 ==> 27 20 13 06 07 14 21 28 ; 32 33 34 35 36 37 38 39 35 42 49 56 57 50 43 36 ; 40 41 42 43 44 45 46 47 29 22 15 23 30 37 44 51 ; 48 49 50 51 52 53 54 55 58 59 52 45 38 31 39 46 ; 56 57 58 59 60 61 62 63 53 60 61 54 47 55 62 63 align 32 GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) EXTN(jsimd_huff_encode_one_block_sse2): %ifdef WIN64 ; rcx = working_state *state ; rdx = JOCTET *buffer ; r8 = JCOEFPTR block ; r9 = int last_dc_val ; [rax+48] = c_derived_tbl *dctbl ; [rax+56] = c_derived_tbl *actbl ;X: X = code stream mov buffer, rdx mov block, r8 movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 push rbx push rbp movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 push rsi push rdi push r12 movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 mov state, rcx movsx code, word [block] ;Z: code = block[0]; pxor xmm4, xmm4 ;A: w4[i] = 0; sub code, r9d ;Z: code -= last_dc_val; mov dctbl, POINTER [rsp+6*8+4*8] mov actbl, POINTER [rsp+6*8+5*8] punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 lea nbits_base, [rel jpeg_nbits_table] add rsp, -DCTSIZE2 * SIZEOF_WORD mov t, rsp %else ; rdi = working_state *state ; rsi = JOCTET *buffer ; rdx = JCOEFPTR block ; rcx = int last_dc_val ; r8 = c_derived_tbl *dctbl ; r9 = c_derived_tbl *actbl ;X: X = code stream movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 push rbx push rbp movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 push r12 mov state, rdi mov buffer, rsi movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 movsx codeq, word [block] ;Z: code = block[0]; lea nbits_base, [rel jpeg_nbits_table] pxor xmm4, xmm4 ;A: w4[i] = 0; sub codeq, rcx ;Z: code -= last_dc_val; punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 lea t, [rsp - DCTSIZE2 * SIZEOF_WORD] ; use red zone for t_ %endif pshuflw xmm0, xmm0, 11001001b ;A: w0 = 01 08 xx 09 02 03 10 11 pinsrw xmm0, word [block + 16 * SIZEOF_WORD], 2 ;A: w0 = 01 08 16 09 02 03 10 11 punpckhdq xmm3, xmm1 ;D: w3 = 04 05 12 13 06 07 14 15 punpcklqdq xmm1, xmm3 ;B: w1 = 08 09 10 11 04 05 12 13 pinsrw xmm0, word [block + 17 * SIZEOF_WORD], 7 ;A: w0 = 01 08 16 09 02 03 10 17 ;A: (Row 0, offset 1) pcmpgtw xmm4, xmm0 ;A: w4[i] = (w0[i] < 0 ? -1 : 0); paddw xmm0, xmm4 ;A: w0[i] += w4[i]; movaps XMMWORD [t + 0 * SIZEOF_WORD], xmm0 ;A: t[i] = w0[i]; movq xmm2, qword [block + 24 * SIZEOF_WORD] ;B: w2 = 24 25 26 27 -- -- -- -- pshuflw xmm2, xmm2, 11011000b ;B: w2 = 24 26 25 27 -- -- -- -- pslldq xmm1, 1 * SIZEOF_WORD ;B: w1 = -- 08 09 10 11 04 05 12 movups xmm5, XMMWORD [block + 48 * SIZEOF_WORD] ;H: w5 = 48 49 50 51 52 53 54 55 movsd xmm1, xmm2 ;B: w1 = 24 26 25 27 11 04 05 12 punpcklqdq xmm2, xmm5 ;C: w2 = 24 26 25 27 48 49 50 51 pinsrw xmm1, word [block + 32 * SIZEOF_WORD], 1 ;B: w1 = 24 32 25 27 11 04 05 12 pxor xmm4, xmm4 ;A: w4[i] = 0; psrldq xmm3, 2 * SIZEOF_WORD ;D: w3 = 12 13 06 07 14 15 -- -- pcmpeqw xmm0, xmm4 ;A: w0[i] = (w0[i] == 0 ? -1 : 0); pinsrw xmm1, word [block + 18 * SIZEOF_WORD], 3 ;B: w1 = 24 32 25 18 11 04 05 12 ; (Row 1, offset 1) pcmpgtw xmm4, xmm1 ;B: w4[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm4 ;B: w1[i] += w4[i]; movaps XMMWORD [t + 8 * SIZEOF_WORD], xmm1 ;B: t[i+8] = w1[i]; pxor xmm4, xmm4 ;B: w4[i] = 0; pcmpeqw xmm1, xmm4 ;B: w1[i] = (w1[i] == 0 ? -1 : 0); packsswb xmm0, xmm1 ;AB: b0[i] = w0[i], b0[i+8] = w1[i] ; w/ signed saturation pinsrw xmm3, word [block + 20 * SIZEOF_WORD], 0 ;D: w3 = 20 13 06 07 14 15 -- -- pinsrw xmm3, word [block + 21 * SIZEOF_WORD], 5 ;D: w3 = 20 13 06 07 14 21 -- -- pinsrw xmm3, word [block + 28 * SIZEOF_WORD], 6 ;D: w3 = 20 13 06 07 14 21 28 -- pinsrw xmm3, word [block + 35 * SIZEOF_WORD], 7 ;D: w3 = 20 13 06 07 14 21 28 35 ; (Row 3, offset 1) pcmpgtw xmm4, xmm3 ;D: w4[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm4 ;D: w3[i] += w4[i]; movaps XMMWORD [t + 24 * SIZEOF_WORD], xmm3 ;D: t[i+24] = w3[i]; pxor xmm4, xmm4 ;D: w4[i] = 0; pcmpeqw xmm3, xmm4 ;D: w3[i] = (w3[i] == 0 ? -1 : 0); pinsrw xmm2, word [block + 19 * SIZEOF_WORD], 0 ;C: w2 = 19 26 25 27 48 49 50 51 cmp code, 1 << 31 ;Z: Set CF if code < 0x80000000, ;Z: i.e. if code is positive pinsrw xmm2, word [block + 33 * SIZEOF_WORD], 2 ;C: w2 = 19 26 33 27 48 49 50 51 pinsrw xmm2, word [block + 40 * SIZEOF_WORD], 3 ;C: w2 = 19 26 33 40 48 49 50 51 adc code, -1 ;Z: code += -1 + (code >= 0 ? 1 : 0); pinsrw xmm2, word [block + 41 * SIZEOF_WORD], 5 ;C: w2 = 19 26 33 40 48 41 50 51 pinsrw xmm2, word [block + 34 * SIZEOF_WORD], 6 ;C: w2 = 19 26 33 40 48 41 34 51 movsxd codeq, code ;Z: sign extend code pinsrw xmm2, word [block + 27 * SIZEOF_WORD], 7 ;C: w2 = 19 26 33 40 48 41 34 27 ; (Row 2, offset 1) pcmpgtw xmm4, xmm2 ;C: w4[i] = (w2[i] < 0 ? -1 : 0); paddw xmm2, xmm4 ;C: w2[i] += w4[i]; movaps XMMWORD [t + 16 * SIZEOF_WORD], xmm2 ;C: t[i+16] = w2[i]; pxor xmm4, xmm4 ;C: w4[i] = 0; pcmpeqw xmm2, xmm4 ;C: w2[i] = (w2[i] == 0 ? -1 : 0); packsswb xmm2, xmm3 ;CD: b2[i] = w2[i], b2[i+8] = w3[i] ; w/ signed saturation movzx nbitsq, byte [NBITS(codeq)] ;Z: nbits = JPEG_NBITS(code); movdqa xmm3, xmm5 ;H: w3 = 48 49 50 51 52 53 54 55 pmovmskb tempd, xmm2 ;Z: temp = 0; temp |= ((b2[i] >> 7) << i); pmovmskb put_bufferd, xmm0 ;Z: put_buffer = 0; put_buffer |= ((b0[i] >> 7) << i); movups xmm0, XMMWORD [block + 56 * SIZEOF_WORD] ;H: w0 = 56 57 58 59 60 61 62 63 punpckhdq xmm3, xmm0 ;H: w3 = 52 53 60 61 54 55 62 63 shl tempd, 16 ;Z: temp <<= 16; psrldq xmm3, 1 * SIZEOF_WORD ;H: w3 = 53 60 61 54 55 62 63 -- pxor xmm2, xmm2 ;H: w2[i] = 0; or put_bufferd, tempd ;Z: put_buffer |= temp; pshuflw xmm3, xmm3, 00111001b ;H: w3 = 60 61 54 53 55 62 63 -- movq xmm1, qword [block + 44 * SIZEOF_WORD] ;G: w1 = 44 45 46 47 -- -- -- -- unpcklps xmm5, xmm0 ;E: w5 = 48 49 56 57 50 51 58 59 pxor xmm0, xmm0 ;H: w0[i] = 0; pinsrw xmm3, word [block + 47 * SIZEOF_WORD], 3 ;H: w3 = 60 61 54 47 55 62 63 -- ; (Row 7, offset 1) pcmpgtw xmm2, xmm3 ;H: w2[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm2 ;H: w3[i] += w2[i]; movaps XMMWORD [t + 56 * SIZEOF_WORD], xmm3 ;H: t[i+56] = w3[i]; movq xmm4, qword [block + 36 * SIZEOF_WORD] ;G: w4 = 36 37 38 39 -- -- -- -- pcmpeqw xmm3, xmm0 ;H: w3[i] = (w3[i] == 0 ? -1 : 0); punpckldq xmm4, xmm1 ;G: w4 = 36 37 44 45 38 39 46 47 mov tempd, [dctbl + c_derived_tbl.ehufco + nbitsq * 4] ;Z: temp = dctbl->ehufco[nbits]; movdqa xmm1, xmm4 ;F: w1 = 36 37 44 45 38 39 46 47 psrldq xmm4, 1 * SIZEOF_WORD ;G: w4 = 37 44 45 38 39 46 47 -- shufpd xmm1, xmm5, 10b ;F: w1 = 36 37 44 45 50 51 58 59 and code, dword [MASK_BITS(nbitsq)] ;Z: code &= (1 << nbits) - 1; pshufhw xmm4, xmm4, 11010011b ;G: w4 = 37 44 45 38 -- 39 46 -- pslldq xmm1, 1 * SIZEOF_WORD ;F: w1 = -- 36 37 44 45 50 51 58 shl tempq, nbitsb ;Z: temp <<= nbits; pinsrw xmm4, word [block + 59 * SIZEOF_WORD], 0 ;G: w4 = 59 44 45 38 -- 39 46 -- pshufd xmm1, xmm1, 11011000b ;F: w1 = -- 36 45 50 37 44 51 58 pinsrw xmm4, word [block + 52 * SIZEOF_WORD], 1 ;G: w4 = 59 52 45 38 -- 39 46 -- or code, tempd ;Z: code |= temp; movlps xmm1, qword [block + 20 * SIZEOF_WORD] ;F: w1 = 20 21 22 23 37 44 51 58 pinsrw xmm4, word [block + 31 * SIZEOF_WORD], 4 ;G: w4 = 59 52 45 38 31 39 46 -- pshuflw xmm1, xmm1, 01110010b ;F: w1 = 22 20 23 21 37 44 51 58 pinsrw xmm4, word [block + 53 * SIZEOF_WORD], 7 ;G: w4 = 59 52 45 38 31 39 46 53 ; (Row 6, offset 1) pxor xmm2, xmm2 ;G: w2[i] = 0; pcmpgtw xmm0, xmm4 ;G: w0[i] = (w4[i] < 0 ? -1 : 0); pinsrw xmm1, word [block + 15 * SIZEOF_WORD], 1 ;F: w1 = 22 15 23 21 37 44 51 58 paddw xmm4, xmm0 ;G: w4[i] += w0[i]; movaps XMMWORD [t + 48 * SIZEOF_WORD], xmm4 ;G: t[48+i] = w4[i]; pinsrw xmm1, word [block + 30 * SIZEOF_WORD], 3 ;F: w1 = 22 15 23 30 37 44 51 58 ; (Row 5, offset 1) pcmpeqw xmm4, xmm2 ;G: w4[i] = (w4[i] == 0 ? -1 : 0); pinsrw xmm5, word [block + 42 * SIZEOF_WORD], 0 ;E: w5 = 42 49 56 57 50 51 58 59 packsswb xmm4, xmm3 ;GH: b4[i] = w4[i], b4[i+8] = w3[i] ; w/ signed saturation pxor xmm0, xmm0 ;F: w0[i] = 0; pinsrw xmm5, word [block + 43 * SIZEOF_WORD], 5 ;E: w5 = 42 49 56 57 50 43 58 59 pcmpgtw xmm2, xmm1 ;F: w2[i] = (w1[i] < 0 ? -1 : 0); pmovmskb tempd, xmm4 ;Z: temp = 0; temp |= ((b4[i] >> 7) << i); pinsrw xmm5, word [block + 36 * SIZEOF_WORD], 6 ;E: w5 = 42 49 56 57 50 43 36 59 paddw xmm1, xmm2 ;F: w1[i] += w2[i]; movaps XMMWORD [t + 40 * SIZEOF_WORD], xmm1 ;F: t[40+i] = w1[i]; pinsrw xmm5, word [block + 29 * SIZEOF_WORD], 7 ;E: w5 = 42 49 56 57 50 43 36 29 ; (Row 4, offset 1) %undef block %define free_bitsq rdx %define free_bitsd edx %define free_bitsb dl pcmpeqw xmm1, xmm0 ;F: w1[i] = (w1[i] == 0 ? -1 : 0); shl tempq, 48 ;Z: temp <<= 48; pxor xmm2, xmm2 ;E: w2[i] = 0; pcmpgtw xmm0, xmm5 ;E: w0[i] = (w5[i] < 0 ? -1 : 0); paddw xmm5, xmm0 ;E: w5[i] += w0[i]; or tempq, put_buffer ;Z: temp |= put_buffer; movaps XMMWORD [t + 32 * SIZEOF_WORD], xmm5 ;E: t[32+i] = w5[i]; lea t, [dword t - 2] ;Z: t = &t[-1]; pcmpeqw xmm5, xmm2 ;E: w5[i] = (w5[i] == 0 ? -1 : 0); packsswb xmm5, xmm1 ;EF: b5[i] = w5[i], b5[i+8] = w1[i] ; w/ signed saturation add nbitsb, byte [dctbl + c_derived_tbl.ehufsi + nbitsq] ;Z: nbits += dctbl->ehufsi[nbits]; %undef dctbl %define code_temp r8d pmovmskb indexd, xmm5 ;Z: index = 0; index |= ((b5[i] >> 7) << i); mov free_bitsd, [state+working_state.cur.free_bits] ;Z: free_bits = state->cur.free_bits; pcmpeqw xmm1, xmm1 ;Z: b1[i] = 0xFF; shl index, 32 ;Z: index <<= 32; mov put_buffer, [state+working_state.cur.put_buffer.simd] ;Z: put_buffer = state->cur.put_buffer.simd; or index, tempq ;Z: index |= temp; not index ;Z: index = ~index; sub free_bitsb, nbitsb ;Z: if ((free_bits -= nbits) >= 0) jnl .ENTRY_SKIP_EMIT_CODE ;Z: goto .ENTRY_SKIP_EMIT_CODE; align 16 .EMIT_CODE: ;Z: .EMIT_CODE: EMIT_QWORD .BLOOP_COND ;Z: insert code, flush buffer, goto .BLOOP_COND ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .BRLOOP: ; do { lea code_temp, [nbitsq - 16] ; code_temp = nbits - 16; movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; mov code, [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP_CODE ; goto .EMIT_BRLOOP_CODE; shl put_buffer, nbitsb ; put_buffer <<= nbits; mov nbits, code_temp ; nbits = code_temp; or put_buffer, codeq ; put_buffer |= code; cmp nbits, 16 ; if (nbits <= 16) jle .ERLOOP ; break; jmp .BRLOOP ; } while (1); ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 times 5 nop .ENTRY_SKIP_EMIT_CODE: ; .ENTRY_SKIP_EMIT_CODE: shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; .BLOOP_COND: ; .BLOOP_COND: test index, index ; if (index != 0) jz .ELOOP ; { .BLOOP: ; do { xor nbits, nbits ; nbits = 0; /* kill tzcnt input dependency */ tzcnt nbitsq, index ; nbits = # of trailing 0 bits in index inc nbits ; ++nbits; lea t, [t + nbitsq * 2] ; t = &t[nbits]; shr index, nbitsb ; index >>= nbits; .EMIT_BRLOOP_CODE_END: ; .EMIT_BRLOOP_CODE_END: cmp nbits, 16 ; if (nbits > 16) jg .BRLOOP ; goto .BRLOOP; .ERLOOP: ; .ERLOOP: movsx codeq, word [t] ; code = *t; lea tempd, [nbitsq * 2] ; temp = nbits * 2; movzx nbits, byte [NBITS(codeq)] ; nbits = JPEG_NBITS(code); lea tempd, [nbitsq + tempq * 8] ; temp = temp * 8 + nbits; mov code_temp, [actbl + c_derived_tbl.ehufco + (tempq - 16) * 4] ; code_temp = actbl->ehufco[temp-16]; shl code_temp, nbitsb ; code_temp <<= nbits; and code, dword [MASK_BITS(nbitsq)] ; code &= (1 << nbits) - 1; add nbitsb, [actbl + c_derived_tbl.ehufsi + (tempq - 16)] ; free_bits -= actbl->ehufsi[temp-16]; or code, code_temp ; code |= code_temp; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jle .EMIT_CODE ; goto .EMIT_CODE; shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; test index, index jnz .BLOOP ; } while (index != 0); .ELOOP: ; } /* index != 0 */ sub td, esp ; t -= (WIN64: &t_[0], UNIX: &t_[64]); %ifdef WIN64 cmp td, (DCTSIZE2 - 2) * SIZEOF_WORD ; if (t != 62) %else cmp td, -2 * SIZEOF_WORD ; if (t != -2) %endif je .EFN ; { movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0] ; nbits = actbl->ehufsi[0]; mov code, [actbl + c_derived_tbl.ehufco + 0] ; code = actbl->ehufco[0]; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jg .EFN_SKIP_EMIT_CODE ; { EMIT_QWORD .EFN ; insert code, flush buffer align 16 .EFN_SKIP_EMIT_CODE: ; } else { shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; .EFN: ; } } mov [state + working_state.cur.put_buffer.simd], put_buffer ; state->cur.put_buffer.simd = put_buffer; mov byte [state + working_state.cur.free_bits], free_bitsb ; state->cur.free_bits = free_bits; %ifdef WIN64 sub rsp, -DCTSIZE2 * SIZEOF_WORD pop r12 pop rdi pop rsi pop rbp pop rbx %else pop r12 pop rbp pop rbx %endif ret ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP_CODE: EMIT_QWORD .EMIT_BRLOOP_CODE_END, { mov nbits, code_temp } ; insert code, flush buffer, ; nbits = code_temp, goto .EMIT_BRLOOP_CODE_END ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32