/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_ #define LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_ #include #include "actions/actions_model_generated.h" #include "actions/sensitive-classifier-base.h" #include "actions/types.h" #include "utils/tokenizer.h" #include "utils/utf8/unicodetext.h" #include "utils/utf8/unilib.h" namespace libtextclassifier3 { class NGramSensitiveModel : public SensitiveTopicModelBase { public: static std::unique_ptr Create( const UniLib* unilib, const NGramLinearRegressionModel* model, const Tokenizer* tokenizer); // Evaluates an n-gram linear regression model, and tests against the // threshold. Returns true in case of a positive classification. The caller // may also optionally query the score. std::pair Eval(const UnicodeText& text) const override; // Evaluates an n-gram linear regression model against all messages in a // conversation and returns true in case of any positive classification. std::pair EvalConversation(const Conversation& conversation, int num_messages) const override; // Exposed for testing only. static uint64 GetNumSkipGrams(int num_tokens, int max_ngram_length, int max_skips); private: explicit NGramSensitiveModel(const UniLib* unilib, const NGramLinearRegressionModel* model, const Tokenizer* tokenizer); // Returns the (begin,end] range of n-grams where the first hashed token // matches the given value. std::pair GetFirstTokenMatches(uint32 token_hash) const; // Returns whether a given n-gram matches the token stream. bool IsNGramMatch(const uint32* tokens, size_t num_tokens, const uint32* ngram_tokens, size_t num_ngram_tokens, int max_skips) const; const NGramLinearRegressionModel* model_; const Tokenizer* tokenizer_; std::unique_ptr owned_tokenizer_; }; } // namespace libtextclassifier3 #endif // LIBTEXTCLASSIFIER_ACTIONS_NGRAM_MODEL_H_