// polynomial for approximating 2^x // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // exp2f parameters deg = 3; // poly degree N = 32; // table entries b = 1/(2*N); // interval a = -b; //// exp2 parameters //deg = 5; // poly degree //N = 128; // table entries //b = 1/(2*N); // interval //a = -b; // find polynomial with minimal relative error f = 2^x; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // return p that minimizes |f(x) - poly(x) - x^d*p(x)| approx_abs = proc(poly,d) { return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = 1; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); // p = roundcoefficients(approx_abs(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/2^x, [a;b], 30)); print("abs error:", accurateinfnorm(2^x-poly(x), [a;b], 30)); print("in [",a,b,"]"); // double interval error for non-nearest rounding: print("rel2 error:", accurateinfnorm(1-poly(x)/2^x, [2*a;2*b], 30)); print("abs2 error:", accurateinfnorm(2^x-poly(x), [2*a;2*b], 30)); print("in [",2*a,2*b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i);