/* * Copyright (c) 2014,2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "math.h" #include "../clcmacro.h" _CLC_OVERLOAD _CLC_DEF float asinpi(float x) { // Computes arcsin(x). // The argument is first reduced by noting that arcsin(x) // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x). // For denormal and small arguments arcsin(x) = x to machine // accuracy. Remaining argument ranges are handled as follows. // For abs(x) <= 0.5 use // arcsin(x) = x + x^3*R(x^2) // where R(x^2) is a rational minimax approximation to // (arcsin(x) - x)/x^3. // For abs(x) > 0.5 exploit the identity: // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2) // together with the above rational approximation, and // reconstruct the terms carefully. const float pi = 3.1415926535897933e+00f; const float piby2_tail = 7.5497894159e-08F; /* 0x33a22168 */ const float hpiby2_head = 7.8539812565e-01F; /* 0x3f490fda */ uint ux = as_uint(x); uint aux = ux & EXSIGNBIT_SP32; uint xs = ux ^ aux; float shalf = as_float(xs | as_uint(0.5f)); int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; float y = as_float(aux); // abs(x) >= 0.5 int transform = xexp >= -1; float y2 = y * y; float rt = 0.5f * (1.0f - y); float r = transform ? rt : y2; // Use a rational approximation for [0.0, 0.5] float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F), -0.0565298683201845211985026327361F), 0.184161606965100694821398249421F); float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F); float u = r * MATH_DIVIDE(a, b); float s = MATH_SQRT(r); float s1 = as_float(as_uint(s) & 0xffff0000); float c = MATH_DIVIDE(mad(-s1, s1, r), s + s1); float p = mad(2.0f*s, u, -mad(c, -2.0f, piby2_tail)); float q = mad(s1, -2.0f, hpiby2_head); float vt = hpiby2_head - (p - q); float v = mad(y, u, y); v = transform ? vt : v; v = MATH_DIVIDE(v, pi); float xbypi = MATH_DIVIDE(x, pi); float ret = as_float(xs | as_uint(v)); ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret; ret = aux == 0x3f800000U ? shalf : ret; ret = xexp < -14 ? xbypi : ret; return ret; } _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinpi, float) #ifdef cl_khr_fp64 #pragma OPENCL EXTENSION cl_khr_fp64 : enable _CLC_OVERLOAD _CLC_DEF double asinpi(double x) { // Computes arcsin(x). // The argument is first reduced by noting that arcsin(x) // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x). // For denormal and small arguments arcsin(x) = x to machine // accuracy. Remaining argument ranges are handled as follows. // For abs(x) <= 0.5 use // arcsin(x) = x + x^3*R(x^2) // where R(x^2) is a rational minimax approximation to // (arcsin(x) - x)/x^3. // For abs(x) > 0.5 exploit the identity: // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2) // together with the above rational approximation, and // reconstruct the terms carefully. const double pi = 0x1.921fb54442d18p+1; const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */ const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */ double y = fabs(x); int xneg = as_int2(x).hi < 0; int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64; // abs(x) >= 0.5 int transform = xexp >= -1; double rt = 0.5 * (1.0 - y); double y2 = y * y; double r = transform ? rt : y2; // Use a rational approximation for [0.0, 0.5] double un = fma(r, fma(r, fma(r, fma(r, fma(r, 0.0000482901920344786991880522822991, 0.00109242697235074662306043804220), -0.0549989809235685841612020091328), 0.275558175256937652532686256258), -0.445017216867635649900123110649), 0.227485835556935010735943483075); double ud = fma(r, fma(r, fma(r, fma(r, 0.105869422087204370341222318533, -0.943639137032492685763471240072), 2.76568859157270989520376345954), -3.28431505720958658909889444194), 1.36491501334161032038194214209); double u = r * MATH_DIVIDE(un, ud); // Reconstruct asin carefully in transformed region double s = sqrt(r); double sh = as_double(as_ulong(s) & 0xffffffff00000000UL); double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh); double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail)); double q = fma(-2.0, sh, hpiby2_head); double vt = hpiby2_head - (p - q); double v = fma(y, u, y); v = transform ? vt : v; v = xexp < -28 ? y : v; v = MATH_DIVIDE(v, pi); v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v; v = y == 1.0 ? 0.5 : v; return xneg ? -v : v; } _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinpi, double) #endif