/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "config.h" #include "math.h" #include "../clcmacro.h" struct fp { ulong mantissa; int exponent; uint sign; }; _CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) { /* special cases */ if (isnan(a) || isnan(b) || isnan(c) || isinf(a) || isinf(b)) return mad(a, b, c); /* If only c is inf, and both a,b are regular numbers, the result is c*/ if (isinf(c)) return c; a = __clc_flush_denormal_if_not_supported(a); b = __clc_flush_denormal_if_not_supported(b); c = __clc_flush_denormal_if_not_supported(c); if (c == 0) return a * b; struct fp st_a, st_b, st_c; st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127; st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127; st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127; st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000; st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000; st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000; st_a.sign = as_uint(a) & 0x80000000; st_b.sign = as_uint(b) & 0x80000000; st_c.sign = as_uint(c) & 0x80000000; // Multiplication. // Move the product to the highest bits to maximize precision // mantissa is 24 bits => product is 48 bits, 2bits non-fraction. // Add one bit for future addition overflow, // add another bit to detect subtraction underflow struct fp st_mul; st_mul.sign = st_a.sign ^ st_b.sign; st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul; st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0; // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel if (st_mul.exponent == 0 && st_mul.mantissa == 0) return c; // Mantissa is 23 fractional bits, shift it the same way as product mantissa #define C_ADJUST 37ul // both exponents are bias adjusted int exp_diff = st_mul.exponent - st_c.exponent; st_c.mantissa <<= C_ADJUST; ulong cutoff_bits = 0; ulong cutoff_mask = (1ul << abs(exp_diff)) - 1ul; if (exp_diff > 0) { cutoff_bits = exp_diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask); st_c.mantissa = exp_diff >= 64 ? 0 : (st_c.mantissa >> exp_diff); } else { cutoff_bits = -exp_diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask); st_mul.mantissa = -exp_diff >= 64 ? 0 : (st_mul.mantissa >> -exp_diff); } struct fp st_fma; st_fma.sign = st_mul.sign; st_fma.exponent = max(st_mul.exponent, st_c.exponent); if (st_c.sign == st_mul.sign) { st_fma.mantissa = st_mul.mantissa + st_c.mantissa; } else { // cutoff bits borrow one st_fma.mantissa = st_mul.mantissa - st_c.mantissa - (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0); } // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign if (st_fma.mantissa > LONG_MAX) { st_fma.mantissa = 0 - st_fma.mantissa; st_fma.sign = st_mul.sign ^ 0x80000000; } // detect overflow/underflow int overflow_bits = 3 - clz(st_fma.mantissa); // adjust exponent st_fma.exponent += overflow_bits; // handle underflow if (overflow_bits < 0) { st_fma.mantissa <<= -overflow_bits; overflow_bits = 0; } // rounding ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1; ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0); ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits)); ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits)); // round to nearest even if ((trunc_bits > grs_bits) || (trunc_bits == grs_bits && last_bit != 0)) st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits)); // Shift mantissa back to bit 23 st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits)); // Detect rounding overflow if (st_fma.mantissa > 0xffffff) { ++st_fma.exponent; st_fma.mantissa >>= 1; } if (st_fma.mantissa == 0) return .0f; // Flating point range limit if (st_fma.exponent > 127) return as_float(as_uint(INFINITY) | st_fma.sign); // Flush denormals if (st_fma.exponent <= -127) return as_float(st_fma.sign); return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) | ((uint)st_fma.mantissa & 0x7fffff)); } _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float, float, float)