/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "../clcmacro.h" #include "config.h" #include "math.h" _CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y) { int ux = as_int(x); int ax = ux & EXSIGNBIT_SP32; float xa = as_float(ax); int sx = ux ^ ax; int ex = ax >> EXPSHIFTBITS_SP32; int uy = as_int(y); int ay = uy & EXSIGNBIT_SP32; float ya = as_float(ay); int ey = ay >> EXPSHIFTBITS_SP32; float xr = as_float(0x3f800000 | (ax & 0x007fffff)); float yr = as_float(0x3f800000 | (ay & 0x007fffff)); int c; int k = ex - ey; while (k > 0) { c = xr >= yr; xr -= c ? yr : 0.0f; xr += xr; --k; } c = xr >= yr; xr -= c ? yr : 0.0f; int lt = ex < ey; xr = lt ? xa : xr; yr = lt ? ya : yr; float s = as_float(ey << EXPSHIFTBITS_SP32); xr *= lt ? 1.0f : s; c = ax == ay; xr = c ? 0.0f : xr; xr = as_float(sx ^ as_int(xr)); c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; xr = c ? as_float(QNANBITPATT_SP32) : xr; return xr; } _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float); #ifdef cl_khr_fp64 _CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y) { ulong ux = as_ulong(x); ulong ax = ux & ~SIGNBIT_DP64; ulong xsgn = ux ^ ax; double dx = as_double(ax); int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64); xexp1 = xexp < 1 ? xexp1 : xexp; ulong uy = as_ulong(y); ulong ay = uy & ~SIGNBIT_DP64; double dy = as_double(ay); int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64); yexp1 = yexp < 1 ? yexp1 : yexp; // First assume |x| > |y| // Set ntimes to the number of times we need to do a // partial remainder. If the exponent of x is an exact multiple // of 53 larger than the exponent of y, and the mantissa of x is // less than the mantissa of y, ntimes will be one too large // but it doesn't matter - it just means that we'll go round // the loop below one extra time. int ntimes = max(0, (xexp1 - yexp1) / 53); double w = ldexp(dy, ntimes * 53); w = ntimes == 0 ? dy : w; double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; // Each time round the loop we compute a partial remainder. // This is done by subtracting a large multiple of w // from x each time, where w is a scaled up version of y. // The subtraction must be performed exactly in quad // precision, though the result at each stage can // fit exactly in a double precision number. int i; double t, v, p, pp; for (i = 0; i < ntimes; i++) { // Compute integral multiplier t = trunc(dx / w); // Compute w * t in quad precision p = w * t; pp = fma(w, t, -p); // Subtract w * t from dx v = dx - p; dx = v + (((dx - v) - p) - pp); // If t was one too large, dx will be negative. Add back one w. dx += dx < 0.0 ? w : 0.0; // Scale w down by 2^(-53) for the next iteration w *= scale; } // One more time // Variable todd says whether the integer t is odd or not t = floor(dx / w); long lt = (long)t; int todd = lt & 1; p = w * t; pp = fma(w, t, -p); v = dx - p; dx = v + (((dx - v) - p) - pp); i = dx < 0.0; todd ^= i; dx += i ? w : 0.0; // At this point, dx lies in the range [0,dy) double ret = as_double(xsgn ^ as_ulong(dx)); dx = as_double(ax); // Now handle |x| == |y| int c = dx == dy; t = as_double(xsgn); ret = c ? t : ret; // Next, handle |x| < |y| c = dx < dy; ret = c ? x : ret; // We don't need anything special for |x| == 0 // |y| is 0 c = dy == 0.0; ret = c ? as_double(QNANBITPATT_DP64) : ret; // y is +-Inf, NaN c = yexp > BIASEDEMAX_DP64; t = y == y ? x : y; ret = c ? t : ret; // x is +=Inf, NaN c = xexp > BIASEDEMAX_DP64; ret = c ? as_double(QNANBITPATT_DP64) : ret; return ret; } _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double); #endif