//===-- ConstString.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Utility/ConstString.h" #include "lldb/Utility/Stream.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/iterator.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/DJB.h" #include "llvm/Support/FormatProviders.h" #include "llvm/Support/RWMutex.h" #include "llvm/Support/Threading.h" #include #include #include #include #include using namespace lldb_private; class Pool { public: /// The default BumpPtrAllocatorImpl slab size. static const size_t AllocatorSlabSize = 4096; static const size_t SizeThreshold = AllocatorSlabSize; /// Every Pool has its own allocator which receives an equal share of /// the ConstString allocations. This means that when allocating many /// ConstStrings, every allocator sees only its small share of allocations and /// assumes LLDB only allocated a small amount of memory so far. In reality /// LLDB allocated a total memory that is N times as large as what the /// allocator sees (where N is the number of string pools). This causes that /// the BumpPtrAllocator continues a long time to allocate memory in small /// chunks which only makes sense when allocating a small amount of memory /// (which is true from the perspective of a single allocator). On some /// systems doing all these small memory allocations causes LLDB to spend /// a lot of time in malloc, so we need to force all these allocators to /// behave like one allocator in terms of scaling their memory allocations /// with increased demand. To do this we set the growth delay for each single /// allocator to a rate so that our pool of allocators scales their memory /// allocations similar to a single BumpPtrAllocatorImpl. /// /// Currently we have 256 string pools and the normal growth delay of the /// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases /// every 128 full chunks), so by changing the delay to 1 we get a /// total growth delay in our allocator collection of 256/1 = 256. This is /// still only half as fast as a normal allocator but we can't go any faster /// without decreasing the number of string pools. static const size_t AllocatorGrowthDelay = 1; typedef llvm::BumpPtrAllocatorImpl Allocator; typedef const char *StringPoolValueType; typedef llvm::StringMap StringPool; typedef llvm::StringMapEntry StringPoolEntryType; static StringPoolEntryType & GetStringMapEntryFromKeyData(const char *keyData) { return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData); } static size_t GetConstCStringLength(const char *ccstr) { if (ccstr != nullptr) { // Since the entry is read only, and we derive the entry entirely from // the pointer, we don't need the lock. const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr); return entry.getKey().size(); } return 0; } StringPoolValueType GetMangledCounterpart(const char *ccstr) const { if (ccstr != nullptr) { const uint8_t h = hash(llvm::StringRef(ccstr)); llvm::sys::SmartScopedReader rlock(m_string_pools[h].m_mutex); return GetStringMapEntryFromKeyData(ccstr).getValue(); } return nullptr; } const char *GetConstCString(const char *cstr) { if (cstr != nullptr) return GetConstCStringWithLength(cstr, strlen(cstr)); return nullptr; } const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) { if (cstr != nullptr) return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len)); return nullptr; } const char *GetConstCStringWithStringRef(const llvm::StringRef &string_ref) { if (string_ref.data()) { const uint8_t h = hash(string_ref); { llvm::sys::SmartScopedReader rlock(m_string_pools[h].m_mutex); auto it = m_string_pools[h].m_string_map.find(string_ref); if (it != m_string_pools[h].m_string_map.end()) return it->getKeyData(); } llvm::sys::SmartScopedWriter wlock(m_string_pools[h].m_mutex); StringPoolEntryType &entry = *m_string_pools[h] .m_string_map.insert(std::make_pair(string_ref, nullptr)) .first; return entry.getKeyData(); } return nullptr; } const char * GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled, const char *mangled_ccstr) { const char *demangled_ccstr = nullptr; { const uint8_t h = hash(demangled); llvm::sys::SmartScopedWriter wlock(m_string_pools[h].m_mutex); // Make or update string pool entry with the mangled counterpart StringPool &map = m_string_pools[h].m_string_map; StringPoolEntryType &entry = *map.try_emplace(demangled).first; entry.second = mangled_ccstr; // Extract the const version of the demangled_cstr demangled_ccstr = entry.getKeyData(); } { // Now assign the demangled const string as the counterpart of the // mangled const string... const uint8_t h = hash(llvm::StringRef(mangled_ccstr)); llvm::sys::SmartScopedWriter wlock(m_string_pools[h].m_mutex); GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr); } // Return the constant demangled C string return demangled_ccstr; } const char *GetConstTrimmedCStringWithLength(const char *cstr, size_t cstr_len) { if (cstr != nullptr) { const size_t trimmed_len = strnlen(cstr, cstr_len); return GetConstCStringWithLength(cstr, trimmed_len); } return nullptr; } // Return the size in bytes that this object and any items in its collection // of uniqued strings + data count values takes in memory. size_t MemorySize() const { size_t mem_size = sizeof(Pool); for (const auto &pool : m_string_pools) { llvm::sys::SmartScopedReader rlock(pool.m_mutex); for (const auto &entry : pool.m_string_map) mem_size += sizeof(StringPoolEntryType) + entry.getKey().size(); } return mem_size; } protected: uint8_t hash(const llvm::StringRef &s) const { uint32_t h = llvm::djbHash(s); return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff; } struct PoolEntry { mutable llvm::sys::SmartRWMutex m_mutex; StringPool m_string_map; }; std::array m_string_pools; }; // Frameworks and dylibs aren't supposed to have global C++ initializers so we // hide the string pool in a static function so that it will get initialized on // the first call to this static function. // // Note, for now we make the string pool a pointer to the pool, because we // can't guarantee that some objects won't get destroyed after the global // destructor chain is run, and trying to make sure no destructors touch // ConstStrings is difficult. So we leak the pool instead. static Pool &StringPool() { static llvm::once_flag g_pool_initialization_flag; static Pool *g_string_pool = nullptr; llvm::call_once(g_pool_initialization_flag, []() { g_string_pool = new Pool(); }); return *g_string_pool; } ConstString::ConstString(const char *cstr) : m_string(StringPool().GetConstCString(cstr)) {} ConstString::ConstString(const char *cstr, size_t cstr_len) : m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {} ConstString::ConstString(const llvm::StringRef &s) : m_string(StringPool().GetConstCStringWithStringRef(s)) {} bool ConstString::operator<(ConstString rhs) const { if (m_string == rhs.m_string) return false; llvm::StringRef lhs_string_ref(GetStringRef()); llvm::StringRef rhs_string_ref(rhs.GetStringRef()); // If both have valid C strings, then return the comparison if (lhs_string_ref.data() && rhs_string_ref.data()) return lhs_string_ref < rhs_string_ref; // Else one of them was nullptr, so if LHS is nullptr then it is less than return lhs_string_ref.data() == nullptr; } Stream &lldb_private::operator<<(Stream &s, ConstString str) { const char *cstr = str.GetCString(); if (cstr != nullptr) s << cstr; return s; } size_t ConstString::GetLength() const { return Pool::GetConstCStringLength(m_string); } bool ConstString::Equals(ConstString lhs, ConstString rhs, const bool case_sensitive) { if (lhs.m_string == rhs.m_string) return true; // Since the pointers weren't equal, and identical ConstStrings always have // identical pointers, the result must be false for case sensitive equality // test. if (case_sensitive) return false; // perform case insensitive equality test llvm::StringRef lhs_string_ref(lhs.GetStringRef()); llvm::StringRef rhs_string_ref(rhs.GetStringRef()); return lhs_string_ref.equals_lower(rhs_string_ref); } int ConstString::Compare(ConstString lhs, ConstString rhs, const bool case_sensitive) { // If the iterators are the same, this is the same string const char *lhs_cstr = lhs.m_string; const char *rhs_cstr = rhs.m_string; if (lhs_cstr == rhs_cstr) return 0; if (lhs_cstr && rhs_cstr) { llvm::StringRef lhs_string_ref(lhs.GetStringRef()); llvm::StringRef rhs_string_ref(rhs.GetStringRef()); if (case_sensitive) { return lhs_string_ref.compare(rhs_string_ref); } else { return lhs_string_ref.compare_lower(rhs_string_ref); } } if (lhs_cstr) return +1; // LHS isn't nullptr but RHS is else return -1; // LHS is nullptr but RHS isn't } void ConstString::Dump(Stream *s, const char *fail_value) const { if (s != nullptr) { const char *cstr = AsCString(fail_value); if (cstr != nullptr) s->PutCString(cstr); } } void ConstString::DumpDebug(Stream *s) const { const char *cstr = GetCString(); size_t cstr_len = GetLength(); // Only print the parens if we have a non-nullptr string const char *parens = cstr ? "\"" : ""; s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64, static_cast(sizeof(void *) * 2), static_cast(this), parens, cstr, parens, static_cast(cstr_len)); } void ConstString::SetCString(const char *cstr) { m_string = StringPool().GetConstCString(cstr); } void ConstString::SetString(const llvm::StringRef &s) { m_string = StringPool().GetConstCStringWithLength(s.data(), s.size()); } void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled, ConstString mangled) { m_string = StringPool().GetConstCStringAndSetMangledCounterPart( demangled, mangled.m_string); } bool ConstString::GetMangledCounterpart(ConstString &counterpart) const { counterpart.m_string = StringPool().GetMangledCounterpart(m_string); return (bool)counterpart; } void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) { m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len); } void ConstString::SetTrimmedCStringWithLength(const char *cstr, size_t cstr_len) { m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len); } size_t ConstString::StaticMemorySize() { // Get the size of the static string pool return StringPool().MemorySize(); } void llvm::format_provider::format(const ConstString &CS, llvm::raw_ostream &OS, llvm::StringRef Options) { format_provider::format(CS.GetStringRef(), OS, Options); } void llvm::yaml::ScalarTraits::output(const ConstString &Val, void *, raw_ostream &Out) { Out << Val.GetStringRef(); } llvm::StringRef llvm::yaml::ScalarTraits::input(llvm::StringRef Scalar, void *, ConstString &Val) { Val = ConstString(Scalar); return {}; }