//===-- SpeculateAnalyses.cpp --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ExecutionEngine/Orc/SpeculateAnalyses.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/CFG.h" #include "llvm/IR/PassManager.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Support/ErrorHandling.h" #include namespace { using namespace llvm; SmallVector findBBwithCalls(const Function &F, bool IndirectCall = false) { SmallVector BBs; auto findCallInst = [&IndirectCall](const Instruction &I) { if (auto Call = dyn_cast(&I)) return Call->isIndirectCall() ? IndirectCall : true; else return false; }; for (auto &BB : F) if (findCallInst(*BB.getTerminator()) || llvm::any_of(BB.instructionsWithoutDebug(), findCallInst)) BBs.emplace_back(&BB); return BBs; } } // namespace // Implementations of Queries shouldn't need to lock the resources // such as LLVMContext, each argument (function) has a non-shared LLVMContext // Plus, if Queries contain states necessary locking scheme should be provided. namespace llvm { namespace orc { // Collect direct calls only void SpeculateQuery::findCalles(const BasicBlock *BB, DenseSet &CallesNames) { assert(BB != nullptr && "Traversing Null BB to find calls?"); auto getCalledFunction = [&CallesNames](const CallBase *Call) { auto CalledValue = Call->getCalledOperand()->stripPointerCasts(); if (auto DirectCall = dyn_cast(CalledValue)) CallesNames.insert(DirectCall->getName()); }; for (auto &I : BB->instructionsWithoutDebug()) if (auto CI = dyn_cast(&I)) getCalledFunction(CI); if (auto II = dyn_cast(BB->getTerminator())) getCalledFunction(II); } bool SpeculateQuery::isStraightLine(const Function &F) { return llvm::all_of(F.getBasicBlockList(), [](const BasicBlock &BB) { return BB.getSingleSuccessor() != nullptr; }); } // BlockFreqQuery Implementations size_t BlockFreqQuery::numBBToGet(size_t numBB) { // small CFG if (numBB < 4) return numBB; // mid-size CFG else if (numBB < 20) return (numBB / 2); else return (numBB / 2) + (numBB / 4); } BlockFreqQuery::ResultTy BlockFreqQuery::operator()(Function &F) { DenseMap> CallerAndCalles; DenseSet Calles; SmallVector, 8> BBFreqs; PassBuilder PB; FunctionAnalysisManager FAM; PB.registerFunctionAnalyses(FAM); auto IBBs = findBBwithCalls(F); if (IBBs.empty()) return None; auto &BFI = FAM.getResult(F); for (const auto I : IBBs) BBFreqs.push_back({I, BFI.getBlockFreq(I).getFrequency()}); assert(IBBs.size() == BBFreqs.size() && "BB Count Mismatch"); llvm::sort(BBFreqs.begin(), BBFreqs.end(), [](decltype(BBFreqs)::const_reference BBF, decltype(BBFreqs)::const_reference BBS) { return BBF.second > BBS.second ? true : false; }); // ignoring number of direct calls in a BB auto Topk = numBBToGet(BBFreqs.size()); for (size_t i = 0; i < Topk; i++) findCalles(BBFreqs[i].first, Calles); assert(!Calles.empty() && "Running Analysis on Function with no calls?"); CallerAndCalles.insert({F.getName(), std::move(Calles)}); return CallerAndCalles; } // SequenceBBQuery Implementation std::size_t SequenceBBQuery::getHottestBlocks(std::size_t TotalBlocks) { if (TotalBlocks == 1) return TotalBlocks; return TotalBlocks / 2; } // FIXME : find good implementation. SequenceBBQuery::BlockListTy SequenceBBQuery::rearrangeBB(const Function &F, const BlockListTy &BBList) { BlockListTy RearrangedBBSet; for (auto &Block : F.getBasicBlockList()) if (llvm::is_contained(BBList, &Block)) RearrangedBBSet.push_back(&Block); assert(RearrangedBBSet.size() == BBList.size() && "BasicBlock missing while rearranging?"); return RearrangedBBSet; } void SequenceBBQuery::traverseToEntryBlock(const BasicBlock *AtBB, const BlockListTy &CallerBlocks, const BackEdgesInfoTy &BackEdgesInfo, const BranchProbabilityInfo *BPI, VisitedBlocksInfoTy &VisitedBlocks) { auto Itr = VisitedBlocks.find(AtBB); if (Itr != VisitedBlocks.end()) { // already visited. if (!Itr->second.Upward) return; Itr->second.Upward = false; } else { // Create hint for newly discoverd blocks. WalkDirection BlockHint; BlockHint.Upward = false; // FIXME: Expensive Check if (llvm::is_contained(CallerBlocks, AtBB)) BlockHint.CallerBlock = true; VisitedBlocks.insert(std::make_pair(AtBB, BlockHint)); } const_pred_iterator PIt = pred_begin(AtBB), EIt = pred_end(AtBB); // Move this check to top, when we have code setup to launch speculative // compiles for function in entry BB, this triggers the speculative compiles // before running the program. if (PIt == EIt) // No Preds. return; DenseSet PredSkipNodes; // Since we are checking for predecessor's backedges, this Block // occurs in second position. for (auto &I : BackEdgesInfo) if (I.second == AtBB) PredSkipNodes.insert(I.first); // Skip predecessors which source of back-edges. for (; PIt != EIt; ++PIt) // checking EdgeHotness is cheaper if (BPI->isEdgeHot(*PIt, AtBB) && !PredSkipNodes.count(*PIt)) traverseToEntryBlock(*PIt, CallerBlocks, BackEdgesInfo, BPI, VisitedBlocks); } void SequenceBBQuery::traverseToExitBlock(const BasicBlock *AtBB, const BlockListTy &CallerBlocks, const BackEdgesInfoTy &BackEdgesInfo, const BranchProbabilityInfo *BPI, VisitedBlocksInfoTy &VisitedBlocks) { auto Itr = VisitedBlocks.find(AtBB); if (Itr != VisitedBlocks.end()) { // already visited. if (!Itr->second.Downward) return; Itr->second.Downward = false; } else { // Create hint for newly discoverd blocks. WalkDirection BlockHint; BlockHint.Downward = false; // FIXME: Expensive Check if (llvm::is_contained(CallerBlocks, AtBB)) BlockHint.CallerBlock = true; VisitedBlocks.insert(std::make_pair(AtBB, BlockHint)); } const_succ_iterator PIt = succ_begin(AtBB), EIt = succ_end(AtBB); if (PIt == EIt) // No succs. return; // If there are hot edges, then compute SuccSkipNodes. DenseSet SuccSkipNodes; // Since we are checking for successor's backedges, this Block // occurs in first position. for (auto &I : BackEdgesInfo) if (I.first == AtBB) SuccSkipNodes.insert(I.second); for (; PIt != EIt; ++PIt) if (BPI->isEdgeHot(AtBB, *PIt) && !SuccSkipNodes.count(*PIt)) traverseToExitBlock(*PIt, CallerBlocks, BackEdgesInfo, BPI, VisitedBlocks); } // Get Block frequencies for blocks and take most frquently executed block, // walk towards the entry block from those blocks and discover the basic blocks // with call. SequenceBBQuery::BlockListTy SequenceBBQuery::queryCFG(Function &F, const BlockListTy &CallerBlocks) { BlockFreqInfoTy BBFreqs; VisitedBlocksInfoTy VisitedBlocks; BackEdgesInfoTy BackEdgesInfo; PassBuilder PB; FunctionAnalysisManager FAM; PB.registerFunctionAnalyses(FAM); auto &BFI = FAM.getResult(F); llvm::FindFunctionBackedges(F, BackEdgesInfo); for (const auto I : CallerBlocks) BBFreqs.push_back({I, BFI.getBlockFreq(I).getFrequency()}); llvm::sort(BBFreqs, [](decltype(BBFreqs)::const_reference Bbf, decltype(BBFreqs)::const_reference Bbs) { return Bbf.second > Bbs.second; }); ArrayRef> HotBlocksRef(BBFreqs); HotBlocksRef = HotBlocksRef.drop_back(BBFreqs.size() - getHottestBlocks(BBFreqs.size())); BranchProbabilityInfo *BPI = FAM.getCachedResult(F); // visit NHotBlocks, // traverse upwards to entry // traverse downwards to end. for (auto I : HotBlocksRef) { traverseToEntryBlock(I.first, CallerBlocks, BackEdgesInfo, BPI, VisitedBlocks); traverseToExitBlock(I.first, CallerBlocks, BackEdgesInfo, BPI, VisitedBlocks); } BlockListTy MinCallerBlocks; for (auto &I : VisitedBlocks) if (I.second.CallerBlock) MinCallerBlocks.push_back(std::move(I.first)); return rearrangeBB(F, MinCallerBlocks); } SpeculateQuery::ResultTy SequenceBBQuery::operator()(Function &F) { // reduce the number of lists! DenseMap> CallerAndCalles; DenseSet Calles; BlockListTy SequencedBlocks; BlockListTy CallerBlocks; CallerBlocks = findBBwithCalls(F); if (CallerBlocks.empty()) return None; if (isStraightLine(F)) SequencedBlocks = rearrangeBB(F, CallerBlocks); else SequencedBlocks = queryCFG(F, CallerBlocks); for (auto BB : SequencedBlocks) findCalles(BB, Calles); CallerAndCalles.insert({F.getName(), std::move(Calles)}); return CallerAndCalles; } } // namespace orc } // namespace llvm