//===-LTOBackend.cpp - LLVM Link Time Optimizer Backend -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the "backend" phase of LTO, i.e. it performs // optimization and code generation on a loaded module. It is generally used // internally by the LTO class but can also be used independently, for example // to implement a standalone ThinLTO backend. // //===----------------------------------------------------------------------===// #include "llvm/LTO/LTOBackend.h" #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/Analysis/ModuleSummaryAnalysis.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/LLVMRemarkStreamer.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Verifier.h" #include "llvm/LTO/LTO.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Object/ModuleSymbolTable.h" #include "llvm/Passes/PassBuilder.h" #include "llvm/Passes/PassPlugin.h" #include "llvm/Passes/StandardInstrumentations.h" #include "llvm/Support/Error.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/SmallVectorMemoryBuffer.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/ThreadPool.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/Scalar/LoopPassManager.h" #include "llvm/Transforms/Utils/FunctionImportUtils.h" #include "llvm/Transforms/Utils/SplitModule.h" using namespace llvm; using namespace lto; #define DEBUG_TYPE "lto-backend" enum class LTOBitcodeEmbedding { DoNotEmbed = 0, EmbedOptimized = 1, EmbedPostMergePreOptimized = 2 }; static cl::opt EmbedBitcode( "lto-embed-bitcode", cl::init(LTOBitcodeEmbedding::DoNotEmbed), cl::values(clEnumValN(LTOBitcodeEmbedding::DoNotEmbed, "none", "Do not embed"), clEnumValN(LTOBitcodeEmbedding::EmbedOptimized, "optimized", "Embed after all optimization passes"), clEnumValN(LTOBitcodeEmbedding::EmbedPostMergePreOptimized, "post-merge-pre-opt", "Embed post merge, but before optimizations")), cl::desc("Embed LLVM bitcode in object files produced by LTO")); static cl::opt ThinLTOAssumeMerged( "thinlto-assume-merged", cl::init(false), cl::desc("Assume the input has already undergone ThinLTO function " "importing and the other pre-optimization pipeline changes.")); LLVM_ATTRIBUTE_NORETURN static void reportOpenError(StringRef Path, Twine Msg) { errs() << "failed to open " << Path << ": " << Msg << '\n'; errs().flush(); exit(1); } Error Config::addSaveTemps(std::string OutputFileName, bool UseInputModulePath) { ShouldDiscardValueNames = false; std::error_code EC; ResolutionFile = std::make_unique( OutputFileName + "resolution.txt", EC, sys::fs::OpenFlags::OF_Text); if (EC) { ResolutionFile.reset(); return errorCodeToError(EC); } auto setHook = [&](std::string PathSuffix, ModuleHookFn &Hook) { // Keep track of the hook provided by the linker, which also needs to run. ModuleHookFn LinkerHook = Hook; Hook = [=](unsigned Task, const Module &M) { // If the linker's hook returned false, we need to pass that result // through. if (LinkerHook && !LinkerHook(Task, M)) return false; std::string PathPrefix; // If this is the combined module (not a ThinLTO backend compile) or the // user hasn't requested using the input module's path, emit to a file // named from the provided OutputFileName with the Task ID appended. if (M.getModuleIdentifier() == "ld-temp.o" || !UseInputModulePath) { PathPrefix = OutputFileName; if (Task != (unsigned)-1) PathPrefix += utostr(Task) + "."; } else PathPrefix = M.getModuleIdentifier() + "."; std::string Path = PathPrefix + PathSuffix + ".bc"; std::error_code EC; raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::OF_None); // Because -save-temps is a debugging feature, we report the error // directly and exit. if (EC) reportOpenError(Path, EC.message()); WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false); return true; }; }; setHook("0.preopt", PreOptModuleHook); setHook("1.promote", PostPromoteModuleHook); setHook("2.internalize", PostInternalizeModuleHook); setHook("3.import", PostImportModuleHook); setHook("4.opt", PostOptModuleHook); setHook("5.precodegen", PreCodeGenModuleHook); CombinedIndexHook = [=](const ModuleSummaryIndex &Index, const DenseSet &GUIDPreservedSymbols) { std::string Path = OutputFileName + "index.bc"; std::error_code EC; raw_fd_ostream OS(Path, EC, sys::fs::OpenFlags::OF_None); // Because -save-temps is a debugging feature, we report the error // directly and exit. if (EC) reportOpenError(Path, EC.message()); WriteIndexToFile(Index, OS); Path = OutputFileName + "index.dot"; raw_fd_ostream OSDot(Path, EC, sys::fs::OpenFlags::OF_None); if (EC) reportOpenError(Path, EC.message()); Index.exportToDot(OSDot, GUIDPreservedSymbols); return true; }; return Error::success(); } #define HANDLE_EXTENSION(Ext) \ llvm::PassPluginLibraryInfo get##Ext##PluginInfo(); #include "llvm/Support/Extension.def" static void RegisterPassPlugins(ArrayRef PassPlugins, PassBuilder &PB) { #define HANDLE_EXTENSION(Ext) \ get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB); #include "llvm/Support/Extension.def" // Load requested pass plugins and let them register pass builder callbacks for (auto &PluginFN : PassPlugins) { auto PassPlugin = PassPlugin::Load(PluginFN); if (!PassPlugin) { errs() << "Failed to load passes from '" << PluginFN << "'. Request ignored.\n"; continue; } PassPlugin->registerPassBuilderCallbacks(PB); } } namespace { std::unique_ptr createTargetMachine(const Config &Conf, const Target *TheTarget, Module &M) { StringRef TheTriple = M.getTargetTriple(); SubtargetFeatures Features; Features.getDefaultSubtargetFeatures(Triple(TheTriple)); for (const std::string &A : Conf.MAttrs) Features.AddFeature(A); Reloc::Model RelocModel; if (Conf.RelocModel) RelocModel = *Conf.RelocModel; else RelocModel = M.getPICLevel() == PICLevel::NotPIC ? Reloc::Static : Reloc::PIC_; Optional CodeModel; if (Conf.CodeModel) CodeModel = *Conf.CodeModel; else CodeModel = M.getCodeModel(); std::unique_ptr TM(TheTarget->createTargetMachine( TheTriple, Conf.CPU, Features.getString(), Conf.Options, RelocModel, CodeModel, Conf.CGOptLevel)); assert(TM && "Failed to create target machine"); return TM; } static void runNewPMPasses(const Config &Conf, Module &Mod, TargetMachine *TM, unsigned OptLevel, bool IsThinLTO, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { Optional PGOOpt; if (!Conf.SampleProfile.empty()) PGOOpt = PGOOptions(Conf.SampleProfile, "", Conf.ProfileRemapping, PGOOptions::SampleUse, PGOOptions::NoCSAction, true); else if (Conf.RunCSIRInstr) { PGOOpt = PGOOptions("", Conf.CSIRProfile, Conf.ProfileRemapping, PGOOptions::IRUse, PGOOptions::CSIRInstr); } else if (!Conf.CSIRProfile.empty()) { PGOOpt = PGOOptions(Conf.CSIRProfile, "", Conf.ProfileRemapping, PGOOptions::IRUse, PGOOptions::CSIRUse); } PassInstrumentationCallbacks PIC; StandardInstrumentations SI(Conf.DebugPassManager); SI.registerCallbacks(PIC); PassBuilder PB(Conf.DebugPassManager, TM, Conf.PTO, PGOOpt, &PIC); AAManager AA; // Parse a custom AA pipeline if asked to. if (auto Err = PB.parseAAPipeline(AA, "default")) report_fatal_error("Error parsing default AA pipeline"); RegisterPassPlugins(Conf.PassPlugins, PB); LoopAnalysisManager LAM(Conf.DebugPassManager); FunctionAnalysisManager FAM(Conf.DebugPassManager); CGSCCAnalysisManager CGAM(Conf.DebugPassManager); ModuleAnalysisManager MAM(Conf.DebugPassManager); // Register the AA manager first so that our version is the one used. FAM.registerPass([&] { return std::move(AA); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM(Conf.DebugPassManager); if (!Conf.DisableVerify) MPM.addPass(VerifierPass()); PassBuilder::OptimizationLevel OL; switch (OptLevel) { default: llvm_unreachable("Invalid optimization level"); case 0: OL = PassBuilder::OptimizationLevel::O0; break; case 1: OL = PassBuilder::OptimizationLevel::O1; break; case 2: OL = PassBuilder::OptimizationLevel::O2; break; case 3: OL = PassBuilder::OptimizationLevel::O3; break; } if (IsThinLTO) MPM.addPass(PB.buildThinLTODefaultPipeline(OL, ImportSummary)); else MPM.addPass(PB.buildLTODefaultPipeline(OL, ExportSummary)); if (!Conf.DisableVerify) MPM.addPass(VerifierPass()); MPM.run(Mod, MAM); } static void runNewPMCustomPasses(const Config &Conf, Module &Mod, TargetMachine *TM, std::string PipelineDesc, std::string AAPipelineDesc, bool DisableVerify) { PassBuilder PB(Conf.DebugPassManager, TM); AAManager AA; // Parse a custom AA pipeline if asked to. if (!AAPipelineDesc.empty()) if (auto Err = PB.parseAAPipeline(AA, AAPipelineDesc)) report_fatal_error("unable to parse AA pipeline description '" + AAPipelineDesc + "': " + toString(std::move(Err))); RegisterPassPlugins(Conf.PassPlugins, PB); LoopAnalysisManager LAM; FunctionAnalysisManager FAM; CGSCCAnalysisManager CGAM; ModuleAnalysisManager MAM; // Register the AA manager first so that our version is the one used. FAM.registerPass([&] { return std::move(AA); }); // Register all the basic analyses with the managers. PB.registerModuleAnalyses(MAM); PB.registerCGSCCAnalyses(CGAM); PB.registerFunctionAnalyses(FAM); PB.registerLoopAnalyses(LAM); PB.crossRegisterProxies(LAM, FAM, CGAM, MAM); ModulePassManager MPM; // Always verify the input. MPM.addPass(VerifierPass()); // Now, add all the passes we've been requested to. if (auto Err = PB.parsePassPipeline(MPM, PipelineDesc)) report_fatal_error("unable to parse pass pipeline description '" + PipelineDesc + "': " + toString(std::move(Err))); if (!DisableVerify) MPM.addPass(VerifierPass()); MPM.run(Mod, MAM); } static void runOldPMPasses(const Config &Conf, Module &Mod, TargetMachine *TM, bool IsThinLTO, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary) { legacy::PassManager passes; passes.add(createTargetTransformInfoWrapperPass(TM->getTargetIRAnalysis())); PassManagerBuilder PMB; PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM->getTargetTriple())); PMB.Inliner = createFunctionInliningPass(); PMB.ExportSummary = ExportSummary; PMB.ImportSummary = ImportSummary; // Unconditionally verify input since it is not verified before this // point and has unknown origin. PMB.VerifyInput = true; PMB.VerifyOutput = !Conf.DisableVerify; PMB.LoopVectorize = true; PMB.SLPVectorize = true; PMB.OptLevel = Conf.OptLevel; PMB.PGOSampleUse = Conf.SampleProfile; PMB.EnablePGOCSInstrGen = Conf.RunCSIRInstr; if (!Conf.RunCSIRInstr && !Conf.CSIRProfile.empty()) { PMB.EnablePGOCSInstrUse = true; PMB.PGOInstrUse = Conf.CSIRProfile; } if (IsThinLTO) PMB.populateThinLTOPassManager(passes); else PMB.populateLTOPassManager(passes); passes.run(Mod); } bool opt(const Config &Conf, TargetMachine *TM, unsigned Task, Module &Mod, bool IsThinLTO, ModuleSummaryIndex *ExportSummary, const ModuleSummaryIndex *ImportSummary, const std::vector &CmdArgs) { if (EmbedBitcode == LTOBitcodeEmbedding::EmbedPostMergePreOptimized) { // FIXME: the motivation for capturing post-merge bitcode and command line // is replicating the compilation environment from bitcode, without needing // to understand the dependencies (the functions to be imported). This // assumes a clang - based invocation, case in which we have the command // line. // It's not very clear how the above motivation would map in the // linker-based case, so we currently don't plumb the command line args in // that case. if (CmdArgs.empty()) LLVM_DEBUG( dbgs() << "Post-(Thin)LTO merge bitcode embedding was requested, but " "command line arguments are not available"); llvm::EmbedBitcodeInModule(Mod, llvm::MemoryBufferRef(), /*EmbedBitcode*/ true, /*EmbedCmdline*/ true, /*Cmdline*/ CmdArgs); } // FIXME: Plumb the combined index into the new pass manager. if (!Conf.OptPipeline.empty()) runNewPMCustomPasses(Conf, Mod, TM, Conf.OptPipeline, Conf.AAPipeline, Conf.DisableVerify); else if (Conf.UseNewPM) runNewPMPasses(Conf, Mod, TM, Conf.OptLevel, IsThinLTO, ExportSummary, ImportSummary); else runOldPMPasses(Conf, Mod, TM, IsThinLTO, ExportSummary, ImportSummary); return !Conf.PostOptModuleHook || Conf.PostOptModuleHook(Task, Mod); } void codegen(const Config &Conf, TargetMachine *TM, AddStreamFn AddStream, unsigned Task, Module &Mod, const ModuleSummaryIndex &CombinedIndex) { if (Conf.PreCodeGenModuleHook && !Conf.PreCodeGenModuleHook(Task, Mod)) return; if (EmbedBitcode == LTOBitcodeEmbedding::EmbedOptimized) llvm::EmbedBitcodeInModule(Mod, llvm::MemoryBufferRef(), /*EmbedBitcode*/ true, /*EmbedCmdline*/ false, /*CmdArgs*/ std::vector()); std::unique_ptr DwoOut; SmallString<1024> DwoFile(Conf.SplitDwarfOutput); if (!Conf.DwoDir.empty()) { std::error_code EC; if (auto EC = llvm::sys::fs::create_directories(Conf.DwoDir)) report_fatal_error("Failed to create directory " + Conf.DwoDir + ": " + EC.message()); DwoFile = Conf.DwoDir; sys::path::append(DwoFile, std::to_string(Task) + ".dwo"); TM->Options.MCOptions.SplitDwarfFile = std::string(DwoFile); } else TM->Options.MCOptions.SplitDwarfFile = Conf.SplitDwarfFile; if (!DwoFile.empty()) { std::error_code EC; DwoOut = std::make_unique(DwoFile, EC, sys::fs::OF_None); if (EC) report_fatal_error("Failed to open " + DwoFile + ": " + EC.message()); } auto Stream = AddStream(Task); legacy::PassManager CodeGenPasses; CodeGenPasses.add( createImmutableModuleSummaryIndexWrapperPass(&CombinedIndex)); if (TM->addPassesToEmitFile(CodeGenPasses, *Stream->OS, DwoOut ? &DwoOut->os() : nullptr, Conf.CGFileType)) report_fatal_error("Failed to setup codegen"); CodeGenPasses.run(Mod); if (DwoOut) DwoOut->keep(); } void splitCodeGen(const Config &C, TargetMachine *TM, AddStreamFn AddStream, unsigned ParallelCodeGenParallelismLevel, std::unique_ptr Mod, const ModuleSummaryIndex &CombinedIndex) { ThreadPool CodegenThreadPool( heavyweight_hardware_concurrency(ParallelCodeGenParallelismLevel)); unsigned ThreadCount = 0; const Target *T = &TM->getTarget(); SplitModule( std::move(Mod), ParallelCodeGenParallelismLevel, [&](std::unique_ptr MPart) { // We want to clone the module in a new context to multi-thread the // codegen. We do it by serializing partition modules to bitcode // (while still on the main thread, in order to avoid data races) and // spinning up new threads which deserialize the partitions into // separate contexts. // FIXME: Provide a more direct way to do this in LLVM. SmallString<0> BC; raw_svector_ostream BCOS(BC); WriteBitcodeToFile(*MPart, BCOS); // Enqueue the task CodegenThreadPool.async( [&](const SmallString<0> &BC, unsigned ThreadId) { LTOLLVMContext Ctx(C); Expected> MOrErr = parseBitcodeFile( MemoryBufferRef(StringRef(BC.data(), BC.size()), "ld-temp.o"), Ctx); if (!MOrErr) report_fatal_error("Failed to read bitcode"); std::unique_ptr MPartInCtx = std::move(MOrErr.get()); std::unique_ptr TM = createTargetMachine(C, T, *MPartInCtx); codegen(C, TM.get(), AddStream, ThreadId, *MPartInCtx, CombinedIndex); }, // Pass BC using std::move to ensure that it get moved rather than // copied into the thread's context. std::move(BC), ThreadCount++); }, false); // Because the inner lambda (which runs in a worker thread) captures our local // variables, we need to wait for the worker threads to terminate before we // can leave the function scope. CodegenThreadPool.wait(); } Expected initAndLookupTarget(const Config &C, Module &Mod) { if (!C.OverrideTriple.empty()) Mod.setTargetTriple(C.OverrideTriple); else if (Mod.getTargetTriple().empty()) Mod.setTargetTriple(C.DefaultTriple); std::string Msg; const Target *T = TargetRegistry::lookupTarget(Mod.getTargetTriple(), Msg); if (!T) return make_error(Msg, inconvertibleErrorCode()); return T; } } Error lto::finalizeOptimizationRemarks( std::unique_ptr DiagOutputFile) { // Make sure we flush the diagnostic remarks file in case the linker doesn't // call the global destructors before exiting. if (!DiagOutputFile) return Error::success(); DiagOutputFile->keep(); DiagOutputFile->os().flush(); return Error::success(); } Error lto::backend(const Config &C, AddStreamFn AddStream, unsigned ParallelCodeGenParallelismLevel, std::unique_ptr Mod, ModuleSummaryIndex &CombinedIndex) { Expected TOrErr = initAndLookupTarget(C, *Mod); if (!TOrErr) return TOrErr.takeError(); std::unique_ptr TM = createTargetMachine(C, *TOrErr, *Mod); if (!C.CodeGenOnly) { if (!opt(C, TM.get(), 0, *Mod, /*IsThinLTO=*/false, /*ExportSummary=*/&CombinedIndex, /*ImportSummary=*/nullptr, /*CmdArgs*/ std::vector())) return Error::success(); } if (ParallelCodeGenParallelismLevel == 1) { codegen(C, TM.get(), AddStream, 0, *Mod, CombinedIndex); } else { splitCodeGen(C, TM.get(), AddStream, ParallelCodeGenParallelismLevel, std::move(Mod), CombinedIndex); } return Error::success(); } static void dropDeadSymbols(Module &Mod, const GVSummaryMapTy &DefinedGlobals, const ModuleSummaryIndex &Index) { std::vector DeadGVs; for (auto &GV : Mod.global_values()) if (GlobalValueSummary *GVS = DefinedGlobals.lookup(GV.getGUID())) if (!Index.isGlobalValueLive(GVS)) { DeadGVs.push_back(&GV); convertToDeclaration(GV); } // Now that all dead bodies have been dropped, delete the actual objects // themselves when possible. for (GlobalValue *GV : DeadGVs) { GV->removeDeadConstantUsers(); // Might reference something defined in native object (i.e. dropped a // non-prevailing IR def, but we need to keep the declaration). if (GV->use_empty()) GV->eraseFromParent(); } } Error lto::thinBackend(const Config &Conf, unsigned Task, AddStreamFn AddStream, Module &Mod, const ModuleSummaryIndex &CombinedIndex, const FunctionImporter::ImportMapTy &ImportList, const GVSummaryMapTy &DefinedGlobals, MapVector &ModuleMap, const std::vector &CmdArgs) { Expected TOrErr = initAndLookupTarget(Conf, Mod); if (!TOrErr) return TOrErr.takeError(); std::unique_ptr TM = createTargetMachine(Conf, *TOrErr, Mod); // Setup optimization remarks. auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( Mod.getContext(), Conf.RemarksFilename, Conf.RemarksPasses, Conf.RemarksFormat, Conf.RemarksWithHotness, Conf.RemarksHotnessThreshold, Task); if (!DiagFileOrErr) return DiagFileOrErr.takeError(); auto DiagnosticOutputFile = std::move(*DiagFileOrErr); // Set the partial sample profile ratio in the profile summary module flag of // the module, if applicable. Mod.setPartialSampleProfileRatio(CombinedIndex); if (Conf.CodeGenOnly) { codegen(Conf, TM.get(), AddStream, Task, Mod, CombinedIndex); return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); } if (Conf.PreOptModuleHook && !Conf.PreOptModuleHook(Task, Mod)) return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); auto OptimizeAndCodegen = [&](Module &Mod, TargetMachine *TM, std::unique_ptr DiagnosticOutputFile) { if (!opt(Conf, TM, Task, Mod, /*IsThinLTO=*/true, /*ExportSummary=*/nullptr, /*ImportSummary=*/&CombinedIndex, CmdArgs)) return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); codegen(Conf, TM, AddStream, Task, Mod, CombinedIndex); return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); }; if (ThinLTOAssumeMerged) return OptimizeAndCodegen(Mod, TM.get(), std::move(DiagnosticOutputFile)); // When linking an ELF shared object, dso_local should be dropped. We // conservatively do this for -fpic. bool ClearDSOLocalOnDeclarations = TM->getTargetTriple().isOSBinFormatELF() && TM->getRelocationModel() != Reloc::Static && Mod.getPIELevel() == PIELevel::Default; renameModuleForThinLTO(Mod, CombinedIndex, ClearDSOLocalOnDeclarations); dropDeadSymbols(Mod, DefinedGlobals, CombinedIndex); thinLTOResolvePrevailingInModule(Mod, DefinedGlobals); if (Conf.PostPromoteModuleHook && !Conf.PostPromoteModuleHook(Task, Mod)) return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); if (!DefinedGlobals.empty()) thinLTOInternalizeModule(Mod, DefinedGlobals); if (Conf.PostInternalizeModuleHook && !Conf.PostInternalizeModuleHook(Task, Mod)) return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); auto ModuleLoader = [&](StringRef Identifier) { assert(Mod.getContext().isODRUniquingDebugTypes() && "ODR Type uniquing should be enabled on the context"); auto I = ModuleMap.find(Identifier); assert(I != ModuleMap.end()); return I->second.getLazyModule(Mod.getContext(), /*ShouldLazyLoadMetadata=*/true, /*IsImporting*/ true); }; FunctionImporter Importer(CombinedIndex, ModuleLoader, ClearDSOLocalOnDeclarations); if (Error Err = Importer.importFunctions(Mod, ImportList).takeError()) return Err; if (Conf.PostImportModuleHook && !Conf.PostImportModuleHook(Task, Mod)) return finalizeOptimizationRemarks(std::move(DiagnosticOutputFile)); return OptimizeAndCodegen(Mod, TM.get(), std::move(DiagnosticOutputFile)); } BitcodeModule *lto::findThinLTOModule(MutableArrayRef BMs) { if (ThinLTOAssumeMerged && BMs.size() == 1) return BMs.begin(); for (BitcodeModule &BM : BMs) { Expected LTOInfo = BM.getLTOInfo(); if (LTOInfo && LTOInfo->IsThinLTO) return &BM; } return nullptr; } Expected lto::findThinLTOModule(MemoryBufferRef MBRef) { Expected> BMsOrErr = getBitcodeModuleList(MBRef); if (!BMsOrErr) return BMsOrErr.takeError(); // The bitcode file may contain multiple modules, we want the one that is // marked as being the ThinLTO module. if (const BitcodeModule *Bm = lto::findThinLTOModule(*BMsOrErr)) return *Bm; return make_error("Could not find module summary", inconvertibleErrorCode()); } bool lto::loadReferencedModules( const Module &M, const ModuleSummaryIndex &CombinedIndex, FunctionImporter::ImportMapTy &ImportList, MapVector &ModuleMap, std::vector> &OwnedImportsLifetimeManager) { if (ThinLTOAssumeMerged) return true; // We can simply import the values mentioned in the combined index, since // we should only invoke this using the individual indexes written out // via a WriteIndexesThinBackend. for (const auto &GlobalList : CombinedIndex) { // Ignore entries for undefined references. if (GlobalList.second.SummaryList.empty()) continue; auto GUID = GlobalList.first; for (const auto &Summary : GlobalList.second.SummaryList) { // Skip the summaries for the importing module. These are included to // e.g. record required linkage changes. if (Summary->modulePath() == M.getModuleIdentifier()) continue; // Add an entry to provoke importing by thinBackend. ImportList[Summary->modulePath()].insert(GUID); } } for (auto &I : ImportList) { ErrorOr> MBOrErr = llvm::MemoryBuffer::getFile(I.first()); if (!MBOrErr) { errs() << "Error loading imported file '" << I.first() << "': " << MBOrErr.getError().message() << "\n"; return false; } Expected BMOrErr = findThinLTOModule(**MBOrErr); if (!BMOrErr) { handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) { errs() << "Error loading imported file '" << I.first() << "': " << EIB.message() << '\n'; }); return false; } ModuleMap.insert({I.first(), *BMOrErr}); OwnedImportsLifetimeManager.push_back(std::move(*MBOrErr)); } return true; }