//===-LTOCodeGenerator.cpp - LLVM Link Time Optimizer ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Link Time Optimization library. This library is // intended to be used by linker to optimize code at link time. // //===----------------------------------------------------------------------===// #include "llvm/LTO/legacy/LTOCodeGenerator.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/CodeGen/ParallelCG.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/config.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/DiagnosticPrinter.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LLVMRemarkStreamer.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassTimingInfo.h" #include "llvm/IR/Verifier.h" #include "llvm/InitializePasses.h" #include "llvm/LTO/LTO.h" #include "llvm/LTO/legacy/LTOModule.h" #include "llvm/LTO/legacy/UpdateCompilerUsed.h" #include "llvm/Linker/Linker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/SubtargetFeature.h" #include "llvm/Remarks/HotnessThresholdParser.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Support/ToolOutputFile.h" #include "llvm/Support/YAMLTraits.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/IPO.h" #include "llvm/Transforms/IPO/Internalize.h" #include "llvm/Transforms/IPO/PassManagerBuilder.h" #include "llvm/Transforms/IPO/WholeProgramDevirt.h" #include "llvm/Transforms/ObjCARC.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include using namespace llvm; const char* LTOCodeGenerator::getVersionString() { #ifdef LLVM_VERSION_INFO return PACKAGE_NAME " version " PACKAGE_VERSION ", " LLVM_VERSION_INFO; #else return PACKAGE_NAME " version " PACKAGE_VERSION; #endif } namespace llvm { cl::opt LTODiscardValueNames( "lto-discard-value-names", cl::desc("Strip names from Value during LTO (other than GlobalValue)."), #ifdef NDEBUG cl::init(true), #else cl::init(false), #endif cl::Hidden); cl::opt RemarksWithHotness( "lto-pass-remarks-with-hotness", cl::desc("With PGO, include profile count in optimization remarks"), cl::Hidden); cl::opt, false, remarks::HotnessThresholdParser> RemarksHotnessThreshold( "lto-pass-remarks-hotness-threshold", cl::desc("Minimum profile count required for an " "optimization remark to be output." " Use 'auto' to apply the threshold from profile summary."), cl::value_desc("uint or 'auto'"), cl::init(0), cl::Hidden); cl::opt RemarksFilename("lto-pass-remarks-output", cl::desc("Output filename for pass remarks"), cl::value_desc("filename")); cl::opt RemarksPasses("lto-pass-remarks-filter", cl::desc("Only record optimization remarks from passes whose " "names match the given regular expression"), cl::value_desc("regex")); cl::opt RemarksFormat( "lto-pass-remarks-format", cl::desc("The format used for serializing remarks (default: YAML)"), cl::value_desc("format"), cl::init("yaml")); cl::opt LTOStatsFile( "lto-stats-file", cl::desc("Save statistics to the specified file"), cl::Hidden); } LTOCodeGenerator::LTOCodeGenerator(LLVMContext &Context) : Context(Context), MergedModule(new Module("ld-temp.o", Context)), TheLinker(new Linker(*MergedModule)) { Context.setDiscardValueNames(LTODiscardValueNames); Context.enableDebugTypeODRUniquing(); initializeLTOPasses(); } LTOCodeGenerator::~LTOCodeGenerator() {} // Initialize LTO passes. Please keep this function in sync with // PassManagerBuilder::populateLTOPassManager(), and make sure all LTO // passes are initialized. void LTOCodeGenerator::initializeLTOPasses() { PassRegistry &R = *PassRegistry::getPassRegistry(); initializeInternalizeLegacyPassPass(R); initializeIPSCCPLegacyPassPass(R); initializeGlobalOptLegacyPassPass(R); initializeConstantMergeLegacyPassPass(R); initializeDAHPass(R); initializeInstructionCombiningPassPass(R); initializeSimpleInlinerPass(R); initializePruneEHPass(R); initializeGlobalDCELegacyPassPass(R); initializeOpenMPOptLegacyPassPass(R); initializeArgPromotionPass(R); initializeJumpThreadingPass(R); initializeSROALegacyPassPass(R); initializeAttributorLegacyPassPass(R); initializeAttributorCGSCCLegacyPassPass(R); initializePostOrderFunctionAttrsLegacyPassPass(R); initializeReversePostOrderFunctionAttrsLegacyPassPass(R); initializeGlobalsAAWrapperPassPass(R); initializeLegacyLICMPassPass(R); initializeMergedLoadStoreMotionLegacyPassPass(R); initializeGVNLegacyPassPass(R); initializeMemCpyOptLegacyPassPass(R); initializeDCELegacyPassPass(R); initializeCFGSimplifyPassPass(R); } void LTOCodeGenerator::setAsmUndefinedRefs(LTOModule *Mod) { const std::vector &undefs = Mod->getAsmUndefinedRefs(); for (int i = 0, e = undefs.size(); i != e; ++i) AsmUndefinedRefs.insert(undefs[i]); } bool LTOCodeGenerator::addModule(LTOModule *Mod) { assert(&Mod->getModule().getContext() == &Context && "Expected module in same context"); bool ret = TheLinker->linkInModule(Mod->takeModule()); setAsmUndefinedRefs(Mod); // We've just changed the input, so let's make sure we verify it. HasVerifiedInput = false; return !ret; } void LTOCodeGenerator::setModule(std::unique_ptr Mod) { assert(&Mod->getModule().getContext() == &Context && "Expected module in same context"); AsmUndefinedRefs.clear(); MergedModule = Mod->takeModule(); TheLinker = std::make_unique(*MergedModule); setAsmUndefinedRefs(&*Mod); // We've just changed the input, so let's make sure we verify it. HasVerifiedInput = false; } void LTOCodeGenerator::setTargetOptions(const TargetOptions &Options) { this->Options = Options; } void LTOCodeGenerator::setDebugInfo(lto_debug_model Debug) { switch (Debug) { case LTO_DEBUG_MODEL_NONE: EmitDwarfDebugInfo = false; return; case LTO_DEBUG_MODEL_DWARF: EmitDwarfDebugInfo = true; return; } llvm_unreachable("Unknown debug format!"); } void LTOCodeGenerator::setOptLevel(unsigned Level) { OptLevel = Level; switch (OptLevel) { case 0: CGOptLevel = CodeGenOpt::None; return; case 1: CGOptLevel = CodeGenOpt::Less; return; case 2: CGOptLevel = CodeGenOpt::Default; return; case 3: CGOptLevel = CodeGenOpt::Aggressive; return; } llvm_unreachable("Unknown optimization level!"); } bool LTOCodeGenerator::writeMergedModules(StringRef Path) { if (!determineTarget()) return false; // We always run the verifier once on the merged module. verifyMergedModuleOnce(); // mark which symbols can not be internalized applyScopeRestrictions(); // create output file std::error_code EC; ToolOutputFile Out(Path, EC, sys::fs::OF_None); if (EC) { std::string ErrMsg = "could not open bitcode file for writing: "; ErrMsg += Path.str() + ": " + EC.message(); emitError(ErrMsg); return false; } // write bitcode to it WriteBitcodeToFile(*MergedModule, Out.os(), ShouldEmbedUselists); Out.os().close(); if (Out.os().has_error()) { std::string ErrMsg = "could not write bitcode file: "; ErrMsg += Path.str() + ": " + Out.os().error().message(); emitError(ErrMsg); Out.os().clear_error(); return false; } Out.keep(); return true; } bool LTOCodeGenerator::compileOptimizedToFile(const char **Name) { // make unique temp output file to put generated code SmallString<128> Filename; int FD; StringRef Extension (FileType == CGFT_AssemblyFile ? "s" : "o"); std::error_code EC = sys::fs::createTemporaryFile("lto-llvm", Extension, FD, Filename); if (EC) { emitError(EC.message()); return false; } // generate object file ToolOutputFile objFile(Filename, FD); bool genResult = compileOptimized(&objFile.os()); objFile.os().close(); if (objFile.os().has_error()) { emitError((Twine("could not write object file: ") + Filename + ": " + objFile.os().error().message()) .str()); objFile.os().clear_error(); sys::fs::remove(Twine(Filename)); return false; } objFile.keep(); if (!genResult) { sys::fs::remove(Twine(Filename)); return false; } NativeObjectPath = Filename.c_str(); *Name = NativeObjectPath.c_str(); return true; } std::unique_ptr LTOCodeGenerator::compileOptimized() { const char *name; if (!compileOptimizedToFile(&name)) return nullptr; // read .o file into memory buffer ErrorOr> BufferOrErr = MemoryBuffer::getFile(name, -1, false); if (std::error_code EC = BufferOrErr.getError()) { emitError(EC.message()); sys::fs::remove(NativeObjectPath); return nullptr; } // remove temp files sys::fs::remove(NativeObjectPath); return std::move(*BufferOrErr); } bool LTOCodeGenerator::compile_to_file(const char **Name, bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, DisableVectorization)) return false; return compileOptimizedToFile(Name); } std::unique_ptr LTOCodeGenerator::compile(bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!optimize(DisableVerify, DisableInline, DisableGVNLoadPRE, DisableVectorization)) return nullptr; return compileOptimized(); } bool LTOCodeGenerator::determineTarget() { if (TargetMach) return true; TripleStr = MergedModule->getTargetTriple(); if (TripleStr.empty()) { TripleStr = sys::getDefaultTargetTriple(); MergedModule->setTargetTriple(TripleStr); } llvm::Triple Triple(TripleStr); // create target machine from info for merged modules std::string ErrMsg; MArch = TargetRegistry::lookupTarget(TripleStr, ErrMsg); if (!MArch) { emitError(ErrMsg); return false; } // Construct LTOModule, hand over ownership of module and target. Use MAttr as // the default set of features. SubtargetFeatures Features(MAttr); Features.getDefaultSubtargetFeatures(Triple); FeatureStr = Features.getString(); // Set a default CPU for Darwin triples. if (MCpu.empty() && Triple.isOSDarwin()) { if (Triple.getArch() == llvm::Triple::x86_64) MCpu = "core2"; else if (Triple.getArch() == llvm::Triple::x86) MCpu = "yonah"; else if (Triple.isArm64e()) MCpu = "apple-a12"; else if (Triple.getArch() == llvm::Triple::aarch64 || Triple.getArch() == llvm::Triple::aarch64_32) MCpu = "cyclone"; } TargetMach = createTargetMachine(); assert(TargetMach && "Unable to create target machine"); return true; } std::unique_ptr LTOCodeGenerator::createTargetMachine() { assert(MArch && "MArch is not set!"); return std::unique_ptr(MArch->createTargetMachine( TripleStr, MCpu, FeatureStr, Options, RelocModel, None, CGOptLevel)); } // If a linkonce global is present in the MustPreserveSymbols, we need to make // sure we honor this. To force the compiler to not drop it, we add it to the // "llvm.compiler.used" global. void LTOCodeGenerator::preserveDiscardableGVs( Module &TheModule, llvm::function_ref mustPreserveGV) { std::vector Used; auto mayPreserveGlobal = [&](GlobalValue &GV) { if (!GV.isDiscardableIfUnused() || GV.isDeclaration() || !mustPreserveGV(GV)) return; if (GV.hasAvailableExternallyLinkage()) return emitWarning( (Twine("Linker asked to preserve available_externally global: '") + GV.getName() + "'").str()); if (GV.hasInternalLinkage()) return emitWarning((Twine("Linker asked to preserve internal global: '") + GV.getName() + "'").str()); Used.push_back(&GV); }; for (auto &GV : TheModule) mayPreserveGlobal(GV); for (auto &GV : TheModule.globals()) mayPreserveGlobal(GV); for (auto &GV : TheModule.aliases()) mayPreserveGlobal(GV); if (Used.empty()) return; appendToCompilerUsed(TheModule, Used); } void LTOCodeGenerator::applyScopeRestrictions() { if (ScopeRestrictionsDone) return; // Declare a callback for the internalize pass that will ask for every // candidate GlobalValue if it can be internalized or not. Mangler Mang; SmallString<64> MangledName; auto mustPreserveGV = [&](const GlobalValue &GV) -> bool { // Unnamed globals can't be mangled, but they can't be preserved either. if (!GV.hasName()) return false; // Need to mangle the GV as the "MustPreserveSymbols" StringSet is filled // with the linker supplied name, which on Darwin includes a leading // underscore. MangledName.clear(); MangledName.reserve(GV.getName().size() + 1); Mang.getNameWithPrefix(MangledName, &GV, /*CannotUsePrivateLabel=*/false); return MustPreserveSymbols.count(MangledName); }; // Preserve linkonce value on linker request preserveDiscardableGVs(*MergedModule, mustPreserveGV); if (!ShouldInternalize) return; if (ShouldRestoreGlobalsLinkage) { // Record the linkage type of non-local symbols so they can be restored // prior // to module splitting. auto RecordLinkage = [&](const GlobalValue &GV) { if (!GV.hasAvailableExternallyLinkage() && !GV.hasLocalLinkage() && GV.hasName()) ExternalSymbols.insert(std::make_pair(GV.getName(), GV.getLinkage())); }; for (auto &GV : *MergedModule) RecordLinkage(GV); for (auto &GV : MergedModule->globals()) RecordLinkage(GV); for (auto &GV : MergedModule->aliases()) RecordLinkage(GV); } // Update the llvm.compiler_used globals to force preserving libcalls and // symbols referenced from asm updateCompilerUsed(*MergedModule, *TargetMach, AsmUndefinedRefs); internalizeModule(*MergedModule, mustPreserveGV); ScopeRestrictionsDone = true; } /// Restore original linkage for symbols that may have been internalized void LTOCodeGenerator::restoreLinkageForExternals() { if (!ShouldInternalize || !ShouldRestoreGlobalsLinkage) return; assert(ScopeRestrictionsDone && "Cannot externalize without internalization!"); if (ExternalSymbols.empty()) return; auto externalize = [this](GlobalValue &GV) { if (!GV.hasLocalLinkage() || !GV.hasName()) return; auto I = ExternalSymbols.find(GV.getName()); if (I == ExternalSymbols.end()) return; GV.setLinkage(I->second); }; llvm::for_each(MergedModule->functions(), externalize); llvm::for_each(MergedModule->globals(), externalize); llvm::for_each(MergedModule->aliases(), externalize); } void LTOCodeGenerator::verifyMergedModuleOnce() { // Only run on the first call. if (HasVerifiedInput) return; HasVerifiedInput = true; bool BrokenDebugInfo = false; if (verifyModule(*MergedModule, &dbgs(), &BrokenDebugInfo)) report_fatal_error("Broken module found, compilation aborted!"); if (BrokenDebugInfo) { emitWarning("Invalid debug info found, debug info will be stripped"); StripDebugInfo(*MergedModule); } } void LTOCodeGenerator::finishOptimizationRemarks() { if (DiagnosticOutputFile) { DiagnosticOutputFile->keep(); // FIXME: LTOCodeGenerator dtor is not invoked on Darwin DiagnosticOutputFile->os().flush(); } } /// Optimize merged modules using various IPO passes bool LTOCodeGenerator::optimize(bool DisableVerify, bool DisableInline, bool DisableGVNLoadPRE, bool DisableVectorization) { if (!this->determineTarget()) return false; auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( Context, RemarksFilename, RemarksPasses, RemarksFormat, RemarksWithHotness, RemarksHotnessThreshold); if (!DiagFileOrErr) { errs() << "Error: " << toString(DiagFileOrErr.takeError()) << "\n"; report_fatal_error("Can't get an output file for the remarks"); } DiagnosticOutputFile = std::move(*DiagFileOrErr); // Setup output file to emit statistics. auto StatsFileOrErr = lto::setupStatsFile(LTOStatsFile); if (!StatsFileOrErr) { errs() << "Error: " << toString(StatsFileOrErr.takeError()) << "\n"; report_fatal_error("Can't get an output file for the statistics"); } StatsFile = std::move(StatsFileOrErr.get()); // Currently there is no support for enabling whole program visibility via a // linker option in the old LTO API, but this call allows it to be specified // via the internal option. Must be done before WPD invoked via the optimizer // pipeline run below. updateVCallVisibilityInModule(*MergedModule, /* WholeProgramVisibilityEnabledInLTO */ false); // We always run the verifier once on the merged module, the `DisableVerify` // parameter only applies to subsequent verify. verifyMergedModuleOnce(); // Mark which symbols can not be internalized this->applyScopeRestrictions(); // Write LTOPostLink flag for passes that require all the modules. MergedModule->addModuleFlag(Module::Error, "LTOPostLink", 1); // Instantiate the pass manager to organize the passes. legacy::PassManager passes; // Add an appropriate DataLayout instance for this module... MergedModule->setDataLayout(TargetMach->createDataLayout()); passes.add( createTargetTransformInfoWrapperPass(TargetMach->getTargetIRAnalysis())); Triple TargetTriple(TargetMach->getTargetTriple()); PassManagerBuilder PMB; PMB.DisableGVNLoadPRE = DisableGVNLoadPRE; PMB.LoopVectorize = !DisableVectorization; PMB.SLPVectorize = !DisableVectorization; if (!DisableInline) PMB.Inliner = createFunctionInliningPass(); PMB.LibraryInfo = new TargetLibraryInfoImpl(TargetTriple); if (Freestanding) PMB.LibraryInfo->disableAllFunctions(); PMB.OptLevel = OptLevel; PMB.VerifyInput = !DisableVerify; PMB.VerifyOutput = !DisableVerify; PMB.populateLTOPassManager(passes); // Run our queue of passes all at once now, efficiently. passes.run(*MergedModule); return true; } bool LTOCodeGenerator::compileOptimized(ArrayRef Out) { if (!this->determineTarget()) return false; // We always run the verifier once on the merged module. If it has already // been called in optimize(), this call will return early. verifyMergedModuleOnce(); legacy::PassManager preCodeGenPasses; // If the bitcode files contain ARC code and were compiled with optimization, // the ObjCARCContractPass must be run, so do it unconditionally here. preCodeGenPasses.add(createObjCARCContractPass()); preCodeGenPasses.run(*MergedModule); // Re-externalize globals that may have been internalized to increase scope // for splitting restoreLinkageForExternals(); // Do code generation. We need to preserve the module in case the client calls // writeMergedModules() after compilation, but we only need to allow this at // parallelism level 1. This is achieved by having splitCodeGen return the // original module at parallelism level 1 which we then assign back to // MergedModule. MergedModule = splitCodeGen(std::move(MergedModule), Out, {}, [&]() { return createTargetMachine(); }, FileType, ShouldRestoreGlobalsLinkage); // If statistics were requested, save them to the specified file or // print them out after codegen. if (StatsFile) PrintStatisticsJSON(StatsFile->os()); else if (AreStatisticsEnabled()) PrintStatistics(); reportAndResetTimings(); finishOptimizationRemarks(); return true; } void LTOCodeGenerator::setCodeGenDebugOptions(ArrayRef Options) { for (StringRef Option : Options) CodegenOptions.push_back(Option.str()); } void LTOCodeGenerator::parseCodeGenDebugOptions() { // if options were requested, set them if (!CodegenOptions.empty()) { // ParseCommandLineOptions() expects argv[0] to be program name. std::vector CodegenArgv(1, "libLLVMLTO"); for (std::string &Arg : CodegenOptions) CodegenArgv.push_back(Arg.c_str()); cl::ParseCommandLineOptions(CodegenArgv.size(), CodegenArgv.data()); } } void LTOCodeGenerator::DiagnosticHandler(const DiagnosticInfo &DI) { // Map the LLVM internal diagnostic severity to the LTO diagnostic severity. lto_codegen_diagnostic_severity_t Severity; switch (DI.getSeverity()) { case DS_Error: Severity = LTO_DS_ERROR; break; case DS_Warning: Severity = LTO_DS_WARNING; break; case DS_Remark: Severity = LTO_DS_REMARK; break; case DS_Note: Severity = LTO_DS_NOTE; break; } // Create the string that will be reported to the external diagnostic handler. std::string MsgStorage; raw_string_ostream Stream(MsgStorage); DiagnosticPrinterRawOStream DP(Stream); DI.print(DP); Stream.flush(); // If this method has been called it means someone has set up an external // diagnostic handler. Assert on that. assert(DiagHandler && "Invalid diagnostic handler"); (*DiagHandler)(Severity, MsgStorage.c_str(), DiagContext); } namespace { struct LTODiagnosticHandler : public DiagnosticHandler { LTOCodeGenerator *CodeGenerator; LTODiagnosticHandler(LTOCodeGenerator *CodeGenPtr) : CodeGenerator(CodeGenPtr) {} bool handleDiagnostics(const DiagnosticInfo &DI) override { CodeGenerator->DiagnosticHandler(DI); return true; } }; } void LTOCodeGenerator::setDiagnosticHandler(lto_diagnostic_handler_t DiagHandler, void *Ctxt) { this->DiagHandler = DiagHandler; this->DiagContext = Ctxt; if (!DiagHandler) return Context.setDiagnosticHandler(nullptr); // Register the LTOCodeGenerator stub in the LLVMContext to forward the // diagnostic to the external DiagHandler. Context.setDiagnosticHandler(std::make_unique(this), true); } namespace { class LTODiagnosticInfo : public DiagnosticInfo { const Twine &Msg; public: LTODiagnosticInfo(const Twine &DiagMsg, DiagnosticSeverity Severity=DS_Error) : DiagnosticInfo(DK_Linker, Severity), Msg(DiagMsg) {} void print(DiagnosticPrinter &DP) const override { DP << Msg; } }; } void LTOCodeGenerator::emitError(const std::string &ErrMsg) { if (DiagHandler) (*DiagHandler)(LTO_DS_ERROR, ErrMsg.c_str(), DiagContext); else Context.diagnose(LTODiagnosticInfo(ErrMsg)); } void LTOCodeGenerator::emitWarning(const std::string &ErrMsg) { if (DiagHandler) (*DiagHandler)(LTO_DS_WARNING, ErrMsg.c_str(), DiagContext); else Context.diagnose(LTODiagnosticInfo(ErrMsg, DS_Warning)); }