//===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass attempts to replace out argument usage with a return of a /// struct. /// /// We can support returning a lot of values directly in registers, but /// idiomatic C code frequently uses a pointer argument to return a second value /// rather than returning a struct by value. GPU stack access is also quite /// painful, so we want to avoid that if possible. Passing a stack object /// pointer to a function also requires an additional address expansion code /// sequence to convert the pointer to be relative to the kernel's scratch wave /// offset register since the callee doesn't know what stack frame the incoming /// pointer is relative to. /// /// The goal is to try rewriting code that looks like this: /// /// int foo(int a, int b, int* out) { /// *out = bar(); /// return a + b; /// } /// /// into something like this: /// /// std::pair foo(int a, int b) { /// return std::make_pair(a + b, bar()); /// } /// /// Typically the incoming pointer is a simple alloca for a temporary variable /// to use the API, which if replaced with a struct return will be easily SROA'd /// out when the stub function we create is inlined /// /// This pass introduces the struct return, but leaves the unused pointer /// arguments and introduces a new stub function calling the struct returning /// body. DeadArgumentElimination should be run after this to clean these up. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/IR/Argument.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #define DEBUG_TYPE "amdgpu-rewrite-out-arguments" using namespace llvm; static cl::opt AnyAddressSpace( "amdgpu-any-address-space-out-arguments", cl::desc("Replace pointer out arguments with " "struct returns for non-private address space"), cl::Hidden, cl::init(false)); static cl::opt MaxNumRetRegs( "amdgpu-max-return-arg-num-regs", cl::desc("Approximately limit number of return registers for replacing out arguments"), cl::Hidden, cl::init(16)); STATISTIC(NumOutArgumentsReplaced, "Number out arguments moved to struct return values"); STATISTIC(NumOutArgumentFunctionsReplaced, "Number of functions with out arguments moved to struct return values"); namespace { class AMDGPURewriteOutArguments : public FunctionPass { private: const DataLayout *DL = nullptr; MemoryDependenceResults *MDA = nullptr; bool checkArgumentUses(Value &Arg) const; bool isOutArgumentCandidate(Argument &Arg) const; #ifndef NDEBUG bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const; #endif public: static char ID; AMDGPURewriteOutArguments() : FunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); FunctionPass::getAnalysisUsage(AU); } bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; }; } // end anonymous namespace INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE, "AMDGPU Rewrite Out Arguments", false, false) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE, "AMDGPU Rewrite Out Arguments", false, false) char AMDGPURewriteOutArguments::ID = 0; bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const { const int MaxUses = 10; int UseCount = 0; for (Use &U : Arg.uses()) { StoreInst *SI = dyn_cast(U.getUser()); if (UseCount > MaxUses) return false; if (!SI) { auto *BCI = dyn_cast(U.getUser()); if (!BCI || !BCI->hasOneUse()) return false; // We don't handle multiple stores currently, so stores to aggregate // pointers aren't worth the trouble since they are canonically split up. Type *DestEltTy = BCI->getType()->getPointerElementType(); if (DestEltTy->isAggregateType()) return false; // We could handle these if we had a convenient way to bitcast between // them. Type *SrcEltTy = Arg.getType()->getPointerElementType(); if (SrcEltTy->isArrayTy()) return false; // Special case handle structs with single members. It is useful to handle // some casts between structs and non-structs, but we can't bitcast // directly between them. directly bitcast between them. Blender uses // some casts that look like { <3 x float> }* to <4 x float>* if ((SrcEltTy->isStructTy() && (SrcEltTy->getStructNumElements() != 1))) return false; // Clang emits OpenCL 3-vector type accesses with a bitcast to the // equivalent 4-element vector and accesses that, and we're looking for // this pointer cast. if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy)) return false; return checkArgumentUses(*BCI); } if (!SI->isSimple() || U.getOperandNo() != StoreInst::getPointerOperandIndex()) return false; ++UseCount; } // Skip unused arguments. return UseCount > 0; } bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const { const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs; PointerType *ArgTy = dyn_cast(Arg.getType()); // TODO: It might be useful for any out arguments, not just privates. if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() && !AnyAddressSpace) || Arg.hasByValAttr() || Arg.hasStructRetAttr() || DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) { return false; } return checkArgumentUses(Arg); } bool AMDGPURewriteOutArguments::doInitialization(Module &M) { DL = &M.getDataLayout(); return false; } #ifndef NDEBUG bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const { auto *VT0 = dyn_cast(Ty0); auto *VT1 = dyn_cast(Ty1); if (!VT0 || !VT1) return false; if (VT0->getNumElements() != 3 || VT1->getNumElements() != 4) return false; return DL->getTypeSizeInBits(VT0->getElementType()) == DL->getTypeSizeInBits(VT1->getElementType()); } #endif bool AMDGPURewriteOutArguments::runOnFunction(Function &F) { if (skipFunction(F)) return false; // TODO: Could probably handle variadic functions. if (F.isVarArg() || F.hasStructRetAttr() || AMDGPU::isEntryFunctionCC(F.getCallingConv())) return false; MDA = &getAnalysis().getMemDep(); unsigned ReturnNumRegs = 0; SmallSet OutArgIndexes; SmallVector ReturnTypes; Type *RetTy = F.getReturnType(); if (!RetTy->isVoidTy()) { ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4; if (ReturnNumRegs >= MaxNumRetRegs) return false; ReturnTypes.push_back(RetTy); } SmallVector OutArgs; for (Argument &Arg : F.args()) { if (isOutArgumentCandidate(Arg)) { LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg << " in function " << F.getName() << '\n'); OutArgs.push_back(&Arg); } } if (OutArgs.empty()) return false; using ReplacementVec = SmallVector, 4>; DenseMap Replacements; SmallVector Returns; for (BasicBlock &BB : F) { if (ReturnInst *RI = dyn_cast(&BB.back())) Returns.push_back(RI); } if (Returns.empty()) return false; bool Changing; do { Changing = false; // Keep retrying if we are able to successfully eliminate an argument. This // helps with cases with multiple arguments which may alias, such as in a // sincos implemntation. If we have 2 stores to arguments, on the first // attempt the MDA query will succeed for the second store but not the // first. On the second iteration we've removed that out clobbering argument // (by effectively moving it into another function) and will find the second // argument is OK to move. for (Argument *OutArg : OutArgs) { bool ThisReplaceable = true; SmallVector, 4> ReplaceableStores; Type *ArgTy = OutArg->getType()->getPointerElementType(); // Skip this argument if converting it will push us over the register // count to return limit. // TODO: This is an approximation. When legalized this could be more. We // can ask TLI for exactly how many. unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4; if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs) continue; // An argument is convertible only if all exit blocks are able to replace // it. for (ReturnInst *RI : Returns) { BasicBlock *BB = RI->getParent(); MemDepResult Q = MDA->getPointerDependencyFrom( MemoryLocation::getBeforeOrAfter(OutArg), true, BB->end(), BB, RI); StoreInst *SI = nullptr; if (Q.isDef()) SI = dyn_cast(Q.getInst()); if (SI) { LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n'); ReplaceableStores.emplace_back(RI, SI); } else { ThisReplaceable = false; break; } } if (!ThisReplaceable) continue; // Try the next argument candidate. for (std::pair Store : ReplaceableStores) { Value *ReplVal = Store.second->getValueOperand(); auto &ValVec = Replacements[Store.first]; if (llvm::find_if(ValVec, [OutArg](const std::pair &Entry) { return Entry.first == OutArg;}) != ValVec.end()) { LLVM_DEBUG(dbgs() << "Saw multiple out arg stores" << *OutArg << '\n'); // It is possible to see stores to the same argument multiple times, // but we expect these would have been optimized out already. ThisReplaceable = false; break; } ValVec.emplace_back(OutArg, ReplVal); Store.second->eraseFromParent(); } if (ThisReplaceable) { ReturnTypes.push_back(ArgTy); OutArgIndexes.insert(OutArg->getArgNo()); ++NumOutArgumentsReplaced; Changing = true; } } } while (Changing); if (Replacements.empty()) return false; LLVMContext &Ctx = F.getParent()->getContext(); StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName()); FunctionType *NewFuncTy = FunctionType::get(NewRetTy, F.getFunctionType()->params(), F.isVarArg()); LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n'); Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage, F.getName() + ".body"); F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc); NewFunc->copyAttributesFrom(&F); NewFunc->setComdat(F.getComdat()); // We want to preserve the function and param attributes, but need to strip // off any return attributes, e.g. zeroext doesn't make sense with a struct. NewFunc->stealArgumentListFrom(F); AttrBuilder RetAttrs; RetAttrs.addAttribute(Attribute::SExt); RetAttrs.addAttribute(Attribute::ZExt); RetAttrs.addAttribute(Attribute::NoAlias); NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs); // TODO: How to preserve metadata? // Move the body of the function into the new rewritten function, and replace // this function with a stub. NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList()); for (std::pair &Replacement : Replacements) { ReturnInst *RI = Replacement.first; IRBuilder<> B(RI); B.SetCurrentDebugLocation(RI->getDebugLoc()); int RetIdx = 0; Value *NewRetVal = UndefValue::get(NewRetTy); Value *RetVal = RI->getReturnValue(); if (RetVal) NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++); for (std::pair ReturnPoint : Replacement.second) { Argument *Arg = ReturnPoint.first; Value *Val = ReturnPoint.second; Type *EltTy = Arg->getType()->getPointerElementType(); if (Val->getType() != EltTy) { Type *EffectiveEltTy = EltTy; if (StructType *CT = dyn_cast(EltTy)) { assert(CT->getNumElements() == 1); EffectiveEltTy = CT->getElementType(0); } if (DL->getTypeSizeInBits(EffectiveEltTy) != DL->getTypeSizeInBits(Val->getType())) { assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType())); Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()), ArrayRef{0, 1, 2}); } Val = B.CreateBitCast(Val, EffectiveEltTy); // Re-create single element composite. if (EltTy != EffectiveEltTy) Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0); } NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++); } if (RetVal) RI->setOperand(0, NewRetVal); else { B.CreateRet(NewRetVal); RI->eraseFromParent(); } } SmallVector StubCallArgs; for (Argument &Arg : F.args()) { if (OutArgIndexes.count(Arg.getArgNo())) { // It's easier to preserve the type of the argument list. We rely on // DeadArgumentElimination to take care of these. StubCallArgs.push_back(UndefValue::get(Arg.getType())); } else { StubCallArgs.push_back(&Arg); } } BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F); IRBuilder<> B(StubBB); CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs); int RetIdx = RetTy->isVoidTy() ? 0 : 1; for (Argument &Arg : F.args()) { if (!OutArgIndexes.count(Arg.getArgNo())) continue; PointerType *ArgType = cast(Arg.getType()); auto *EltTy = ArgType->getElementType(); const auto Align = DL->getValueOrABITypeAlignment(Arg.getParamAlign(), EltTy); Value *Val = B.CreateExtractValue(StubCall, RetIdx++); Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace()); // We can peek through bitcasts, so the type may not match. Value *PtrVal = B.CreateBitCast(&Arg, PtrTy); B.CreateAlignedStore(Val, PtrVal, Align); } if (!RetTy->isVoidTy()) { B.CreateRet(B.CreateExtractValue(StubCall, 0)); } else { B.CreateRetVoid(); } // The function is now a stub we want to inline. F.addFnAttr(Attribute::AlwaysInline); ++NumOutArgumentFunctionsReplaced; return true; } FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() { return new AMDGPURewriteOutArguments(); }