//====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This file implements a pass that converts X86 cmov instructions into /// branches when profitable. This pass is conservative. It transforms if and /// only if it can guarantee a gain with high confidence. /// /// Thus, the optimization applies under the following conditions: /// 1. Consider as candidates only CMOVs in innermost loops (assume that /// most hotspots are represented by these loops). /// 2. Given a group of CMOV instructions that are using the same EFLAGS def /// instruction: /// a. Consider them as candidates only if all have the same code condition /// or the opposite one to prevent generating more than one conditional /// jump per EFLAGS def instruction. /// b. Consider them as candidates only if all are profitable to be /// converted (assume that one bad conversion may cause a degradation). /// 3. Apply conversion only for loops that are found profitable and only for /// CMOV candidates that were found profitable. /// a. A loop is considered profitable only if conversion will reduce its /// depth cost by some threshold. /// b. CMOV is considered profitable if the cost of its condition is higher /// than the average cost of its true-value and false-value by 25% of /// branch-misprediction-penalty. This assures no degradation even with /// 25% branch misprediction. /// /// Note: This pass is assumed to run on SSA machine code. // //===----------------------------------------------------------------------===// // // External interfaces: // FunctionPass *llvm::createX86CmovConverterPass(); // bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF); // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86InstrInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/InitializePasses.h" #include "llvm/MC/MCSchedule.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; #define DEBUG_TYPE "x86-cmov-conversion" STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups"); STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates"); STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops"); STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups"); // This internal switch can be used to turn off the cmov/branch optimization. static cl::opt EnableCmovConverter("x86-cmov-converter", cl::desc("Enable the X86 cmov-to-branch optimization."), cl::init(true), cl::Hidden); static cl::opt GainCycleThreshold("x86-cmov-converter-threshold", cl::desc("Minimum gain per loop (in cycles) threshold."), cl::init(4), cl::Hidden); static cl::opt ForceMemOperand( "x86-cmov-converter-force-mem-operand", cl::desc("Convert cmovs to branches whenever they have memory operands."), cl::init(true), cl::Hidden); namespace { /// Converts X86 cmov instructions into branches when profitable. class X86CmovConverterPass : public MachineFunctionPass { public: X86CmovConverterPass() : MachineFunctionPass(ID) { } StringRef getPassName() const override { return "X86 cmov Conversion"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override; /// Pass identification, replacement for typeid. static char ID; private: MachineRegisterInfo *MRI = nullptr; const TargetInstrInfo *TII = nullptr; const TargetRegisterInfo *TRI = nullptr; TargetSchedModel TSchedModel; /// List of consecutive CMOV instructions. using CmovGroup = SmallVector; using CmovGroups = SmallVector; /// Collect all CMOV-group-candidates in \p CurrLoop and update \p /// CmovInstGroups accordingly. /// /// \param Blocks List of blocks to process. /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. /// \returns true iff it found any CMOV-group-candidate. bool collectCmovCandidates(ArrayRef Blocks, CmovGroups &CmovInstGroups, bool IncludeLoads = false); /// Check if it is profitable to transform each CMOV-group-candidates into /// branch. Remove all groups that are not profitable from \p CmovInstGroups. /// /// \param Blocks List of blocks to process. /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop. /// \returns true iff any CMOV-group-candidate remain. bool checkForProfitableCmovCandidates(ArrayRef Blocks, CmovGroups &CmovInstGroups); /// Convert the given list of consecutive CMOV instructions into a branch. /// /// \param Group Consecutive CMOV instructions to be converted into branch. void convertCmovInstsToBranches(SmallVectorImpl &Group) const; }; } // end anonymous namespace char X86CmovConverterPass::ID = 0; void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); } bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; if (!EnableCmovConverter) return false; LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() << "**********\n"); bool Changed = false; MachineLoopInfo &MLI = getAnalysis(); const TargetSubtargetInfo &STI = MF.getSubtarget(); MRI = &MF.getRegInfo(); TII = STI.getInstrInfo(); TRI = STI.getRegisterInfo(); TSchedModel.init(&STI); // Before we handle the more subtle cases of register-register CMOVs inside // of potentially hot loops, we want to quickly remove all CMOVs with // a memory operand. The CMOV will risk a stall waiting for the load to // complete that speculative execution behind a branch is better suited to // handle on modern x86 chips. if (ForceMemOperand) { CmovGroups AllCmovGroups; SmallVector Blocks; for (auto &MBB : MF) Blocks.push_back(&MBB); if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) { for (auto &Group : AllCmovGroups) { // Skip any group that doesn't do at least one memory operand cmov. if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); })) continue; // For CMOV groups which we can rewrite and which contain a memory load, // always rewrite them. On x86, a CMOV will dramatically amplify any // memory latency by blocking speculative execution. Changed = true; convertCmovInstsToBranches(Group); } } } //===--------------------------------------------------------------------===// // Register-operand Conversion Algorithm // --------- // For each inner most loop // collectCmovCandidates() { // Find all CMOV-group-candidates. // } // // checkForProfitableCmovCandidates() { // * Calculate both loop-depth and optimized-loop-depth. // * Use these depth to check for loop transformation profitability. // * Check for CMOV-group-candidate transformation profitability. // } // // For each profitable CMOV-group-candidate // convertCmovInstsToBranches() { // * Create FalseBB, SinkBB, Conditional branch to SinkBB. // * Replace each CMOV instruction with a PHI instruction in SinkBB. // } // // Note: For more details, see each function description. //===--------------------------------------------------------------------===// // Build up the loops in pre-order. SmallVector Loops(MLI.begin(), MLI.end()); // Note that we need to check size on each iteration as we accumulate child // loops. for (int i = 0; i < (int)Loops.size(); ++i) for (MachineLoop *Child : Loops[i]->getSubLoops()) Loops.push_back(Child); for (MachineLoop *CurrLoop : Loops) { // Optimize only inner most loops. if (!CurrLoop->getSubLoops().empty()) continue; // List of consecutive CMOV instructions to be processed. CmovGroups CmovInstGroups; if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) continue; if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups)) continue; Changed = true; for (auto &Group : CmovInstGroups) convertCmovInstsToBranches(Group); } return Changed; } bool X86CmovConverterPass::collectCmovCandidates( ArrayRef Blocks, CmovGroups &CmovInstGroups, bool IncludeLoads) { //===--------------------------------------------------------------------===// // Collect all CMOV-group-candidates and add them into CmovInstGroups. // // CMOV-group: // CMOV instructions, in same MBB, that uses same EFLAGS def instruction. // // CMOV-group-candidate: // CMOV-group where all the CMOV instructions are // 1. consecutive. // 2. have same condition code or opposite one. // 3. have only operand registers (X86::CMOVrr). //===--------------------------------------------------------------------===// // List of possible improvement (TODO's): // -------------------------------------- // TODO: Add support for X86::CMOVrm instructions. // TODO: Add support for X86::SETcc instructions. // TODO: Add support for CMOV-groups with non consecutive CMOV instructions. //===--------------------------------------------------------------------===// // Current processed CMOV-Group. CmovGroup Group; for (auto *MBB : Blocks) { Group.clear(); // Condition code of first CMOV instruction current processed range and its // opposite condition code. X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID, MemOpCC = X86::COND_INVALID; // Indicator of a non CMOVrr instruction in the current processed range. bool FoundNonCMOVInst = false; // Indicator for current processed CMOV-group if it should be skipped. bool SkipGroup = false; for (auto &I : *MBB) { // Skip debug instructions. if (I.isDebugInstr()) continue; X86::CondCode CC = X86::getCondFromCMov(I); // Check if we found a X86::CMOVrr instruction. if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) { if (Group.empty()) { // We found first CMOV in the range, reset flags. FirstCC = CC; FirstOppCC = X86::GetOppositeBranchCondition(CC); // Clear out the prior group's memory operand CC. MemOpCC = X86::COND_INVALID; FoundNonCMOVInst = false; SkipGroup = false; } Group.push_back(&I); // Check if it is a non-consecutive CMOV instruction or it has different // condition code than FirstCC or FirstOppCC. if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC)) // Mark the SKipGroup indicator to skip current processed CMOV-Group. SkipGroup = true; if (I.mayLoad()) { if (MemOpCC == X86::COND_INVALID) // The first memory operand CMOV. MemOpCC = CC; else if (CC != MemOpCC) // Can't handle mixed conditions with memory operands. SkipGroup = true; } // Check if we were relying on zero-extending behavior of the CMOV. if (!SkipGroup && llvm::any_of( MRI->use_nodbg_instructions(I.defs().begin()->getReg()), [&](MachineInstr &UseI) { return UseI.getOpcode() == X86::SUBREG_TO_REG; })) // FIXME: We should model the cost of using an explicit MOV to handle // the zero-extension rather than just refusing to handle this. SkipGroup = true; continue; } // If Group is empty, keep looking for first CMOV in the range. if (Group.empty()) continue; // We found a non X86::CMOVrr instruction. FoundNonCMOVInst = true; // Check if this instruction define EFLAGS, to determine end of processed // range, as there would be no more instructions using current EFLAGS def. if (I.definesRegister(X86::EFLAGS)) { // Check if current processed CMOV-group should not be skipped and add // it as a CMOV-group-candidate. if (!SkipGroup) CmovInstGroups.push_back(Group); else ++NumOfSkippedCmovGroups; Group.clear(); } } // End of basic block is considered end of range, check if current processed // CMOV-group should not be skipped and add it as a CMOV-group-candidate. if (Group.empty()) continue; if (!SkipGroup) CmovInstGroups.push_back(Group); else ++NumOfSkippedCmovGroups; } NumOfCmovGroupCandidate += CmovInstGroups.size(); return !CmovInstGroups.empty(); } /// \returns Depth of CMOV instruction as if it was converted into branch. /// \param TrueOpDepth depth cost of CMOV true value operand. /// \param FalseOpDepth depth cost of CMOV false value operand. static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) { // The depth of the result after branch conversion is // TrueOpDepth * TrueOpProbability + FalseOpDepth * FalseOpProbability. // As we have no info about branch weight, we assume 75% for one and 25% for // the other, and pick the result with the largest resulting depth. return std::max( divideCeil(TrueOpDepth * 3 + FalseOpDepth, 4), divideCeil(FalseOpDepth * 3 + TrueOpDepth, 4)); } bool X86CmovConverterPass::checkForProfitableCmovCandidates( ArrayRef Blocks, CmovGroups &CmovInstGroups) { struct DepthInfo { /// Depth of original loop. unsigned Depth; /// Depth of optimized loop. unsigned OptDepth; }; /// Number of loop iterations to calculate depth for ?! static const unsigned LoopIterations = 2; DenseMap DepthMap; DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}}; enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 }; /// For each register type maps the register to its last def instruction. DenseMap RegDefMaps[RegTypeNum]; /// Maps register operand to its def instruction, which can be nullptr if it /// is unknown (e.g., operand is defined outside the loop). DenseMap OperandToDefMap; // Set depth of unknown instruction (i.e., nullptr) to zero. DepthMap[nullptr] = {0, 0}; SmallPtrSet CmovInstructions; for (auto &Group : CmovInstGroups) CmovInstructions.insert(Group.begin(), Group.end()); //===--------------------------------------------------------------------===// // Step 1: Calculate instruction depth and loop depth. // Optimized-Loop: // loop with CMOV-group-candidates converted into branches. // // Instruction-Depth: // instruction latency + max operand depth. // * For CMOV instruction in optimized loop the depth is calculated as: // CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth) // TODO: Find a better way to estimate the latency of the branch instruction // rather than using the CMOV latency. // // Loop-Depth: // max instruction depth of all instructions in the loop. // Note: instruction with max depth represents the critical-path in the loop. // // Loop-Depth[i]: // Loop-Depth calculated for first `i` iterations. // Note: it is enough to calculate depth for up to two iterations. // // Depth-Diff[i]: // Number of cycles saved in first 'i` iterations by optimizing the loop. //===--------------------------------------------------------------------===// for (unsigned I = 0; I < LoopIterations; ++I) { DepthInfo &MaxDepth = LoopDepth[I]; for (auto *MBB : Blocks) { // Clear physical registers Def map. RegDefMaps[PhyRegType].clear(); for (MachineInstr &MI : *MBB) { // Skip debug instructions. if (MI.isDebugInstr()) continue; unsigned MIDepth = 0; unsigned MIDepthOpt = 0; bool IsCMOV = CmovInstructions.count(&MI); for (auto &MO : MI.uses()) { // Checks for "isUse()" as "uses()" returns also implicit definitions. if (!MO.isReg() || !MO.isUse()) continue; Register Reg = MO.getReg(); auto &RDM = RegDefMaps[Reg.isVirtual()]; if (MachineInstr *DefMI = RDM.lookup(Reg)) { OperandToDefMap[&MO] = DefMI; DepthInfo Info = DepthMap.lookup(DefMI); MIDepth = std::max(MIDepth, Info.Depth); if (!IsCMOV) MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth); } } if (IsCMOV) MIDepthOpt = getDepthOfOptCmov( DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth, DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth); // Iterates over all operands to handle implicit definitions as well. for (auto &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; Register Reg = MO.getReg(); RegDefMaps[Reg.isVirtual()][Reg] = &MI; } unsigned Latency = TSchedModel.computeInstrLatency(&MI); DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency}; MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth); MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt); } } } unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth, LoopDepth[1].Depth - LoopDepth[1].OptDepth}; //===--------------------------------------------------------------------===// // Step 2: Check if Loop worth to be optimized. // Worth-Optimize-Loop: // case 1: Diff[1] == Diff[0] // Critical-path is iteration independent - there is no dependency // of critical-path instructions on critical-path instructions of // previous iteration. // Thus, it is enough to check gain percent of 1st iteration - // To be conservative, the optimized loop need to have a depth of // 12.5% cycles less than original loop, per iteration. // // case 2: Diff[1] > Diff[0] // Critical-path is iteration dependent - there is dependency of // critical-path instructions on critical-path instructions of // previous iteration. // Thus, check the gain percent of the 2nd iteration (similar to the // previous case), but it is also required to check the gradient of // the gain - the change in Depth-Diff compared to the change in // Loop-Depth between 1st and 2nd iterations. // To be conservative, the gradient need to be at least 50%. // // In addition, In order not to optimize loops with very small gain, the // gain (in cycles) after 2nd iteration should not be less than a given // threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply. // // If loop is not worth optimizing, remove all CMOV-group-candidates. //===--------------------------------------------------------------------===// if (Diff[1] < GainCycleThreshold) return false; bool WorthOptLoop = false; if (Diff[1] == Diff[0]) WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth; else if (Diff[1] > Diff[0]) WorthOptLoop = (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) && (Diff[1] * 8 >= LoopDepth[1].Depth); if (!WorthOptLoop) return false; ++NumOfLoopCandidate; //===--------------------------------------------------------------------===// // Step 3: Check for each CMOV-group-candidate if it worth to be optimized. // Worth-Optimize-Group: // Iff it worths to optimize all CMOV instructions in the group. // // Worth-Optimize-CMOV: // Predicted branch is faster than CMOV by the difference between depth of // condition operand and depth of taken (predicted) value operand. // To be conservative, the gain of such CMOV transformation should cover at // at least 25% of branch-misprediction-penalty. //===--------------------------------------------------------------------===// unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty; CmovGroups TempGroups; std::swap(TempGroups, CmovInstGroups); for (auto &Group : TempGroups) { bool WorthOpGroup = true; for (auto *MI : Group) { // Avoid CMOV instruction which value is used as a pointer to load from. // This is another conservative check to avoid converting CMOV instruction // used with tree-search like algorithm, where the branch is unpredicted. auto UIs = MRI->use_instructions(MI->defs().begin()->getReg()); if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) { unsigned Op = UIs.begin()->getOpcode(); if (Op == X86::MOV64rm || Op == X86::MOV32rm) { WorthOpGroup = false; break; } } unsigned CondCost = DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth; unsigned ValCost = getDepthOfOptCmov( DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth, DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth); if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) { WorthOpGroup = false; break; } } if (WorthOpGroup) CmovInstGroups.push_back(Group); } return !CmovInstGroups.empty(); } static bool checkEFLAGSLive(MachineInstr *MI) { if (MI->killsRegister(X86::EFLAGS)) return false; // The EFLAGS operand of MI might be missing a kill marker. // Figure out whether EFLAGS operand should LIVE after MI instruction. MachineBasicBlock *BB = MI->getParent(); MachineBasicBlock::iterator ItrMI = MI; // Scan forward through BB for a use/def of EFLAGS. for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) { if (I->readsRegister(X86::EFLAGS)) return true; if (I->definesRegister(X86::EFLAGS)) return false; } // We hit the end of the block, check whether EFLAGS is live into a successor. for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) { if ((*I)->isLiveIn(X86::EFLAGS)) return true; } return false; } /// Given /p First CMOV instruction and /p Last CMOV instruction representing a /// group of CMOV instructions, which may contain debug instructions in between, /// move all debug instructions to after the last CMOV instruction, making the /// CMOV group consecutive. static void packCmovGroup(MachineInstr *First, MachineInstr *Last) { assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID && "Last instruction in a CMOV group must be a CMOV instruction"); SmallVector DBGInstructions; for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) { if (I->isDebugInstr()) DBGInstructions.push_back(&*I); } // Splice the debug instruction after the cmov group. MachineBasicBlock *MBB = First->getParent(); for (auto *MI : DBGInstructions) MBB->insertAfter(Last, MI->removeFromParent()); } void X86CmovConverterPass::convertCmovInstsToBranches( SmallVectorImpl &Group) const { assert(!Group.empty() && "No CMOV instructions to convert"); ++NumOfOptimizedCmovGroups; // If the CMOV group is not packed, e.g., there are debug instructions between // first CMOV and last CMOV, then pack the group and make the CMOV instruction // consecutive by moving the debug instructions to after the last CMOV. packCmovGroup(Group.front(), Group.back()); // To convert a CMOVcc instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. // Before // ----- // MBB: // cond = cmp ... // v1 = CMOVge t1, f1, cond // v2 = CMOVlt t2, f2, cond // v3 = CMOVge v1, f3, cond // // After // ----- // MBB: // cond = cmp ... // jge %SinkMBB // // FalseMBB: // jmp %SinkMBB // // SinkMBB: // %v1 = phi[%f1, %FalseMBB], [%t1, %MBB] // %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch // ; true-value with false-value // %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use // ; previous Phi instruction result MachineInstr &MI = *Group.front(); MachineInstr *LastCMOV = Group.back(); DebugLoc DL = MI.getDebugLoc(); X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI)); X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); // Potentially swap the condition codes so that any memory operand to a CMOV // is in the *false* position instead of the *true* position. We can invert // any non-memory operand CMOV instructions to cope with this and we ensure // memory operand CMOVs are only included with a single condition code. if (llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad() && X86::getCondFromCMov(*I) == CC; })) std::swap(CC, OppCC); MachineBasicBlock *MBB = MI.getParent(); MachineFunction::iterator It = ++MBB->getIterator(); MachineFunction *F = MBB->getParent(); const BasicBlock *BB = MBB->getBasicBlock(); MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB); MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB); F->insert(It, FalseMBB); F->insert(It, SinkMBB); // If the EFLAGS register isn't dead in the terminator, then claim that it's // live into the sink and copy blocks. if (checkEFLAGSLive(LastCMOV)) { FalseMBB->addLiveIn(X86::EFLAGS); SinkMBB->addLiveIn(X86::EFLAGS); } // Transfer the remainder of BB and its successor edges to SinkMBB. SinkMBB->splice(SinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end()); SinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // Add the false and sink blocks as its successors. MBB->addSuccessor(FalseMBB); MBB->addSuccessor(SinkMBB); // Create the conditional branch instruction. BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC); // Add the sink block to the false block successors. FalseMBB->addSuccessor(SinkMBB); MachineInstrBuilder MIB; MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); MachineBasicBlock::iterator MIItEnd = std::next(MachineBasicBlock::iterator(LastCMOV)); MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin(); MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); // First we need to insert an explicit load on the false path for any memory // operand. We also need to potentially do register rewriting here, but it is // simpler as the memory operands are always on the false path so we can // simply take that input, whatever it is. DenseMap FalseBBRegRewriteTable; for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) { auto &MI = *MIIt++; // Skip any CMOVs in this group which don't load from memory. if (!MI.mayLoad()) { // Remember the false-side register input. Register FalseReg = MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg(); // Walk back through any intermediate cmovs referenced. while (true) { auto FRIt = FalseBBRegRewriteTable.find(FalseReg); if (FRIt == FalseBBRegRewriteTable.end()) break; FalseReg = FRIt->second; } FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg; continue; } // The condition must be the *opposite* of the one we've decided to branch // on as the branch will go *around* the load and the load should happen // when the CMOV condition is false. assert(X86::getCondFromCMov(MI) == OppCC && "Can only handle memory-operand cmov instructions with a condition " "opposite to the selected branch direction."); // The goal is to rewrite the cmov from: // // MBB: // %A = CMOVcc %B (tied), (mem) // // to // // MBB: // %A = CMOVcc %B (tied), %C // FalseMBB: // %C = MOV (mem) // // Which will allow the next loop to rewrite the CMOV in terms of a PHI: // // MBB: // JMP!cc SinkMBB // FalseMBB: // %C = MOV (mem) // SinkMBB: // %A = PHI [ %C, FalseMBB ], [ %B, MBB] // Get a fresh register to use as the destination of the MOV. const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg()); Register TmpReg = MRI->createVirtualRegister(RC); SmallVector NewMIs; bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, NewMIs); (void)Unfolded; assert(Unfolded && "Should never fail to unfold a loading cmov!"); // Move the new CMOV to just before the old one and reset any impacted // iterator. auto *NewCMOV = NewMIs.pop_back_val(); assert(X86::getCondFromCMov(*NewCMOV) == OppCC && "Last new instruction isn't the expected CMOV!"); LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump()); MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV); if (&*MIItBegin == &MI) MIItBegin = MachineBasicBlock::iterator(NewCMOV); // Sink whatever instructions were needed to produce the unfolded operand // into the false block. for (auto *NewMI : NewMIs) { LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump()); FalseMBB->insert(FalseInsertionPoint, NewMI); // Re-map any operands that are from other cmovs to the inputs for this block. for (auto &MOp : NewMI->uses()) { if (!MOp.isReg()) continue; auto It = FalseBBRegRewriteTable.find(MOp.getReg()); if (It == FalseBBRegRewriteTable.end()) continue; MOp.setReg(It->second); // This might have been a kill when it referenced the cmov result, but // it won't necessarily be once rewritten. // FIXME: We could potentially improve this by tracking whether the // operand to the cmov was also a kill, and then skipping the PHI node // construction below. MOp.setIsKill(false); } } MBB->erase(MachineBasicBlock::iterator(MI), std::next(MachineBasicBlock::iterator(MI))); // Add this PHI to the rewrite table. FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg; } // As we are creating the PHIs, we have to be careful if there is more than // one. Later CMOVs may reference the results of earlier CMOVs, but later // PHIs have to reference the individual true/false inputs from earlier PHIs. // That also means that PHI construction must work forward from earlier to // later, and that the code must maintain a mapping from earlier PHI's // destination registers, and the registers that went into the PHI. DenseMap> RegRewriteTable; for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { Register DestReg = MIIt->getOperand(0).getReg(); Register Op1Reg = MIIt->getOperand(1).getReg(); Register Op2Reg = MIIt->getOperand(2).getReg(); // If this CMOV we are processing is the opposite condition from the jump we // generated, then we have to swap the operands for the PHI that is going to // be generated. if (X86::getCondFromCMov(*MIIt) == OppCC) std::swap(Op1Reg, Op2Reg); auto Op1Itr = RegRewriteTable.find(Op1Reg); if (Op1Itr != RegRewriteTable.end()) Op1Reg = Op1Itr->second.first; auto Op2Itr = RegRewriteTable.find(Op2Reg); if (Op2Itr != RegRewriteTable.end()) Op2Reg = Op2Itr->second.second; // SinkMBB: // %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ] // ... MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg) .addReg(Op1Reg) .addMBB(FalseMBB) .addReg(Op2Reg) .addMBB(MBB); (void)MIB; LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump()); LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump()); // Add this PHI to the rewrite table. RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); } // Now remove the CMOV(s). MBB->erase(MIItBegin, MIItEnd); } INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", false, false) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion", false, false) FunctionPass *llvm::createX86CmovConverterPass() { return new X86CmovConverterPass(); }