//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass transforms loops by placing phi nodes at the end of the loops for // all values that are live across the loop boundary. For example, it turns // the left into the right code: // // for (...) for (...) // if (c) if (c) // X1 = ... X1 = ... // else else // X2 = ... X2 = ... // X3 = phi(X1, X2) X3 = phi(X1, X2) // ... = X3 + 4 X4 = phi(X3) // ... = X4 + 4 // // This is still valid LLVM; the extra phi nodes are purely redundant, and will // be trivially eliminated by InstCombine. The major benefit of this // transformation is that it makes many other loop optimizations, such as // LoopUnswitching, simpler. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LCSSA.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/BranchProbabilityInfo.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PredIteratorCache.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/SSAUpdater.h" using namespace llvm; #define DEBUG_TYPE "lcssa" STATISTIC(NumLCSSA, "Number of live out of a loop variables"); #ifdef EXPENSIVE_CHECKS static bool VerifyLoopLCSSA = true; #else static bool VerifyLoopLCSSA = false; #endif static cl::opt VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA), cl::Hidden, cl::desc("Verify loop lcssa form (time consuming)")); /// Return true if the specified block is in the list. static bool isExitBlock(BasicBlock *BB, const SmallVectorImpl &ExitBlocks) { return is_contained(ExitBlocks, BB); } /// For every instruction from the worklist, check to see if it has any uses /// that are outside the current loop. If so, insert LCSSA PHI nodes and /// rewrite the uses. bool llvm::formLCSSAForInstructions(SmallVectorImpl &Worklist, const DominatorTree &DT, const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder, SmallVectorImpl *PHIsToRemove) { SmallVector UsesToRewrite; SmallSetVector LocalPHIsToRemove; PredIteratorCache PredCache; bool Changed = false; IRBuilderBase::InsertPointGuard InsertPtGuard(Builder); // Cache the Loop ExitBlocks across this loop. We expect to get a lot of // instructions within the same loops, computing the exit blocks is // expensive, and we're not mutating the loop structure. SmallDenseMap> LoopExitBlocks; while (!Worklist.empty()) { UsesToRewrite.clear(); Instruction *I = Worklist.pop_back_val(); assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist"); BasicBlock *InstBB = I->getParent(); Loop *L = LI.getLoopFor(InstBB); assert(L && "Instruction belongs to a BB that's not part of a loop"); if (!LoopExitBlocks.count(L)) L->getExitBlocks(LoopExitBlocks[L]); assert(LoopExitBlocks.count(L)); const SmallVectorImpl &ExitBlocks = LoopExitBlocks[L]; if (ExitBlocks.empty()) continue; for (Use &U : I->uses()) { Instruction *User = cast(U.getUser()); BasicBlock *UserBB = User->getParent(); // For practical purposes, we consider that the use in a PHI // occurs in the respective predecessor block. For more info, // see the `phi` doc in LangRef and the LCSSA doc. if (auto *PN = dyn_cast(User)) UserBB = PN->getIncomingBlock(U); if (InstBB != UserBB && !L->contains(UserBB)) UsesToRewrite.push_back(&U); } // If there are no uses outside the loop, exit with no change. if (UsesToRewrite.empty()) continue; ++NumLCSSA; // We are applying the transformation // Invoke instructions are special in that their result value is not // available along their unwind edge. The code below tests to see whether // DomBB dominates the value, so adjust DomBB to the normal destination // block, which is effectively where the value is first usable. BasicBlock *DomBB = InstBB; if (auto *Inv = dyn_cast(I)) DomBB = Inv->getNormalDest(); const DomTreeNode *DomNode = DT.getNode(DomBB); SmallVector AddedPHIs; SmallVector PostProcessPHIs; SmallVector InsertedPHIs; SSAUpdater SSAUpdate(&InsertedPHIs); SSAUpdate.Initialize(I->getType(), I->getName()); // Force re-computation of I, as some users now need to use the new PHI // node. if (SE) SE->forgetValue(I); // Insert the LCSSA phi's into all of the exit blocks dominated by the // value, and add them to the Phi's map. for (BasicBlock *ExitBB : ExitBlocks) { if (!DT.dominates(DomNode, DT.getNode(ExitBB))) continue; // If we already inserted something for this BB, don't reprocess it. if (SSAUpdate.HasValueForBlock(ExitBB)) continue; Builder.SetInsertPoint(&ExitBB->front()); PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB), I->getName() + ".lcssa"); // Get the debug location from the original instruction. PN->setDebugLoc(I->getDebugLoc()); // Add inputs from inside the loop for this PHI. This is valid // because `I` dominates `ExitBB` (checked above). This implies // that every incoming block/edge is dominated by `I` as well, // i.e. we can add uses of `I` to those incoming edges/append to the incoming // blocks without violating the SSA dominance property. for (BasicBlock *Pred : PredCache.get(ExitBB)) { PN->addIncoming(I, Pred); // If the exit block has a predecessor not within the loop, arrange for // the incoming value use corresponding to that predecessor to be // rewritten in terms of a different LCSSA PHI. if (!L->contains(Pred)) UsesToRewrite.push_back( &PN->getOperandUse(PN->getOperandNumForIncomingValue( PN->getNumIncomingValues() - 1))); } AddedPHIs.push_back(PN); // Remember that this phi makes the value alive in this block. SSAUpdate.AddAvailableValue(ExitBB, PN); // LoopSimplify might fail to simplify some loops (e.g. when indirect // branches are involved). In such situations, it might happen that an // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we // create PHIs in such an exit block, we are also inserting PHIs into L2's // header. This could break LCSSA form for L2 because these inserted PHIs // can also have uses outside of L2. Remember all PHIs in such situation // as to revisit than later on. FIXME: Remove this if indirectbr support // into LoopSimplify gets improved. if (auto *OtherLoop = LI.getLoopFor(ExitBB)) if (!L->contains(OtherLoop)) PostProcessPHIs.push_back(PN); } // Rewrite all uses outside the loop in terms of the new PHIs we just // inserted. for (Use *UseToRewrite : UsesToRewrite) { Instruction *User = cast(UseToRewrite->getUser()); BasicBlock *UserBB = User->getParent(); // For practical purposes, we consider that the use in a PHI // occurs in the respective predecessor block. For more info, // see the `phi` doc in LangRef and the LCSSA doc. if (auto *PN = dyn_cast(User)) UserBB = PN->getIncomingBlock(*UseToRewrite); // If this use is in an exit block, rewrite to use the newly inserted PHI. // This is required for correctness because SSAUpdate doesn't handle uses // in the same block. It assumes the PHI we inserted is at the end of the // block. if (isa(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) { UseToRewrite->set(&UserBB->front()); continue; } // If we added a single PHI, it must dominate all uses and we can directly // rename it. if (AddedPHIs.size() == 1) { UseToRewrite->set(AddedPHIs[0]); continue; } // Otherwise, do full PHI insertion. SSAUpdate.RewriteUse(*UseToRewrite); } SmallVector DbgValues; llvm::findDbgValues(DbgValues, I); // Update pre-existing debug value uses that reside outside the loop. auto &Ctx = I->getContext(); for (auto DVI : DbgValues) { BasicBlock *UserBB = DVI->getParent(); if (InstBB == UserBB || L->contains(UserBB)) continue; // We currently only handle debug values residing in blocks that were // traversed while rewriting the uses. If we inserted just a single PHI, // we will handle all relevant debug values. Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0] : SSAUpdate.FindValueForBlock(UserBB); if (V) DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); } // SSAUpdater might have inserted phi-nodes inside other loops. We'll need // to post-process them to keep LCSSA form. for (PHINode *InsertedPN : InsertedPHIs) { if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent())) if (!L->contains(OtherLoop)) PostProcessPHIs.push_back(InsertedPN); } // Post process PHI instructions that were inserted into another disjoint // loop and update their exits properly. for (auto *PostProcessPN : PostProcessPHIs) if (!PostProcessPN->use_empty()) Worklist.push_back(PostProcessPN); // Keep track of PHI nodes that we want to remove because they did not have // any uses rewritten. If the new PHI is used, store it so that we can // try to propagate dbg.value intrinsics to it. SmallVector NeedDbgValues; for (PHINode *PN : AddedPHIs) if (PN->use_empty()) LocalPHIsToRemove.insert(PN); else NeedDbgValues.push_back(PN); insertDebugValuesForPHIs(InstBB, NeedDbgValues); Changed = true; } // Remove PHI nodes that did not have any uses rewritten or add them to // PHIsToRemove, so the caller can remove them after some additional cleanup. // We need to redo the use_empty() check here, because even if the PHI node // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be // using it. This cleanup is not guaranteed to handle trees/cycles of PHI // nodes that only are used by each other. Such situations has only been // noticed when the input IR contains unreachable code, and leaving some extra // redundant PHI nodes in such situations is considered a minor problem. if (PHIsToRemove) { PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end()); } else { for (PHINode *PN : LocalPHIsToRemove) if (PN->use_empty()) PN->eraseFromParent(); } return Changed; } // Compute the set of BasicBlocks in the loop `L` dominating at least one exit. static void computeBlocksDominatingExits( Loop &L, const DominatorTree &DT, SmallVector &ExitBlocks, SmallSetVector &BlocksDominatingExits) { SmallVector BBWorklist; // We start from the exit blocks, as every block trivially dominates itself // (not strictly). for (BasicBlock *BB : ExitBlocks) BBWorklist.push_back(BB); while (!BBWorklist.empty()) { BasicBlock *BB = BBWorklist.pop_back_val(); // Check if this is a loop header. If this is the case, we're done. if (L.getHeader() == BB) continue; // Otherwise, add its immediate predecessor in the dominator tree to the // worklist, unless we visited it already. BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock(); // Exit blocks can have an immediate dominator not beloinging to the // loop. For an exit block to be immediately dominated by another block // outside the loop, it implies not all paths from that dominator, to the // exit block, go through the loop. // Example: // // |---- A // | | // | B<-- // | | | // |---> C -- // | // D // // C is the exit block of the loop and it's immediately dominated by A, // which doesn't belong to the loop. if (!L.contains(IDomBB)) continue; if (BlocksDominatingExits.insert(IDomBB)) BBWorklist.push_back(IDomBB); } } bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; #ifdef EXPENSIVE_CHECKS // Verify all sub-loops are in LCSSA form already. for (Loop *SubLoop: L) assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!"); #endif SmallVector ExitBlocks; L.getExitBlocks(ExitBlocks); if (ExitBlocks.empty()) return false; SmallSetVector BlocksDominatingExits; // We want to avoid use-scanning leveraging dominance informations. // If a block doesn't dominate any of the loop exits, the none of the values // defined in the loop can be used outside. // We compute the set of blocks fullfilling the conditions in advance // walking the dominator tree upwards until we hit a loop header. computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits); SmallVector Worklist; // Look at all the instructions in the loop, checking to see if they have uses // outside the loop. If so, put them into the worklist to rewrite those uses. for (BasicBlock *BB : BlocksDominatingExits) { // Skip blocks that are part of any sub-loops, they must be in LCSSA // already. if (LI->getLoopFor(BB) != &L) continue; for (Instruction &I : *BB) { // Reject two common cases fast: instructions with no uses (like stores) // and instructions with one use that is in the same block as this. if (I.use_empty() || (I.hasOneUse() && I.user_back()->getParent() == BB && !isa(I.user_back()))) continue; // Tokens cannot be used in PHI nodes, so we skip over them. // We can run into tokens which are live out of a loop with catchswitch // instructions in Windows EH if the catchswitch has one catchpad which // is inside the loop and another which is not. if (I.getType()->isTokenTy()) continue; Worklist.push_back(&I); } } IRBuilder<> Builder(L.getHeader()->getContext()); Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder); // If we modified the code, remove any caches about the loop from SCEV to // avoid dangling entries. // FIXME: This is a big hammer, can we clear the cache more selectively? if (SE && Changed) SE->forgetLoop(&L); assert(L.isLCSSAForm(DT)); return Changed; } /// Process a loop nest depth first. bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE) { bool Changed = false; // Recurse depth-first through inner loops. for (Loop *SubLoop : L.getSubLoops()) Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE); Changed |= formLCSSA(L, DT, LI, SE); return Changed; } /// Process all loops in the function, inner-most out. static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT, ScalarEvolution *SE) { bool Changed = false; for (auto &L : *LI) Changed |= formLCSSARecursively(*L, DT, LI, SE); return Changed; } namespace { struct LCSSAWrapperPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid LCSSAWrapperPass() : FunctionPass(ID) { initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry()); } // Cached analysis information for the current function. DominatorTree *DT; LoopInfo *LI; ScalarEvolution *SE; bool runOnFunction(Function &F) override; void verifyAnalysis() const override { // This check is very expensive. On the loop intensive compiles it may cause // up to 10x slowdown. Currently it's disabled by default. LPPassManager // always does limited form of the LCSSA verification. Similar reasoning // was used for the LoopInfo verifier. if (VerifyLoopLCSSA) { assert(all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }) && "LCSSA form is broken!"); } }; /// This transformation requires natural loop information & requires that /// loop preheaders be inserted into the CFG. It maintains both of these, /// as well as the CFG. It also requires dominator information. void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreservedID(LoopSimplifyID); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); // This is needed to perform LCSSA verification inside LPPassManager AU.addRequired(); AU.addPreserved(); } }; } char LCSSAWrapperPass::ID = 0; INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass) INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass", false, false) Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); } char &llvm::LCSSAID = LCSSAWrapperPass::ID; /// Transform \p F into loop-closed SSA form. bool LCSSAWrapperPass::runOnFunction(Function &F) { LI = &getAnalysis().getLoopInfo(); DT = &getAnalysis().getDomTree(); auto *SEWP = getAnalysisIfAvailable(); SE = SEWP ? &SEWP->getSE() : nullptr; return formLCSSAOnAllLoops(LI, *DT, SE); } PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) { auto &LI = AM.getResult(F); auto &DT = AM.getResult(F); auto *SE = AM.getCachedResult(F); if (!formLCSSAOnAllLoops(&LI, DT, SE)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserveSet(); PA.preserve(); PA.preserve(); PA.preserve(); PA.preserve(); // BPI maps terminators to probabilities, since we don't modify the CFG, no // updates are needed to preserve it. PA.preserve(); PA.preserve(); return PA; }