; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc < %s -mtriple=arm-eabi -mattr=+v6t2 | FileCheck %s --check-prefixes=CHECK,SCALAR ; RUN: llc < %s -mtriple=arm-eabi -mattr=+v6t2 -mattr=+neon | FileCheck %s --check-prefixes=CHECK,NEON declare i8 @llvm.fshl.i8(i8, i8, i8) declare i16 @llvm.fshl.i16(i16, i16, i16) declare i32 @llvm.fshl.i32(i32, i32, i32) declare i64 @llvm.fshl.i64(i64, i64, i64) declare <4 x i32> @llvm.fshl.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) declare i8 @llvm.fshr.i8(i8, i8, i8) declare i16 @llvm.fshr.i16(i16, i16, i16) declare i32 @llvm.fshr.i32(i32, i32, i32) declare i64 @llvm.fshr.i64(i64, i64, i64) declare <4 x i32> @llvm.fshr.v4i32(<4 x i32>, <4 x i32>, <4 x i32>) ; General case - all operands can be variables. define i16 @fshl_i16(i16 %x, i16 %y, i16 %z) { ; CHECK-LABEL: fshl_i16: ; CHECK: @ %bb.0: ; CHECK-NEXT: pkhbt r0, r1, r0, lsl #16 ; CHECK-NEXT: and r1, r2, #15 ; CHECK-NEXT: lsl r0, r0, r1 ; CHECK-NEXT: lsr r0, r0, #16 ; CHECK-NEXT: bx lr %f = call i16 @llvm.fshl.i16(i16 %x, i16 %y, i16 %z) ret i16 %f } define i32 @fshl_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshl_i32: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r3, #31 ; CHECK-NEXT: lsr r1, r1, #1 ; CHECK-NEXT: bic r3, r3, r2 ; CHECK-NEXT: and r2, r2, #31 ; CHECK-NEXT: lsl r0, r0, r2 ; CHECK-NEXT: orr r0, r0, r1, lsr r3 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshl.i37(i37, i37, i37) define i37 @fshl_i37(i37 %x, i37 %y, i37 %z) { ; CHECK-LABEL: fshl_i37: ; CHECK: @ %bb.0: ; CHECK-NEXT: .save {r4, r5, r6, r7, r8, lr} ; CHECK-NEXT: push {r4, r5, r6, r7, r8, lr} ; CHECK-NEXT: mov r8, r1 ; CHECK-NEXT: mov r4, r0 ; CHECK-NEXT: ldr r0, [sp, #24] ; CHECK-NEXT: mov r6, r3 ; CHECK-NEXT: ldr r1, [sp, #28] ; CHECK-NEXT: mov r7, r2 ; CHECK-NEXT: mov r2, #37 ; CHECK-NEXT: mov r3, #0 ; CHECK-NEXT: bl __aeabi_uldivmod ; CHECK-NEXT: mov r0, #63 ; CHECK-NEXT: bic r1, r0, r2 ; CHECK-NEXT: lsl r0, r6, #27 ; CHECK-NEXT: lsl r3, r7, #27 ; CHECK-NEXT: orr r0, r0, r7, lsr #5 ; CHECK-NEXT: and r2, r2, #63 ; CHECK-NEXT: lsrs r7, r0, #1 ; CHECK-NEXT: rrx r0, r3 ; CHECK-NEXT: rsb r3, r1, #32 ; CHECK-NEXT: lsr r0, r0, r1 ; CHECK-NEXT: lsl r6, r4, r2 ; CHECK-NEXT: orr r0, r0, r7, lsl r3 ; CHECK-NEXT: subs r3, r1, #32 ; CHECK-NEXT: lsr r1, r7, r1 ; CHECK-NEXT: lsrpl r0, r7, r3 ; CHECK-NEXT: subs r5, r2, #32 ; CHECK-NEXT: movwpl r6, #0 ; CHECK-NEXT: orr r0, r6, r0 ; CHECK-NEXT: rsb r6, r2, #32 ; CHECK-NEXT: cmp r5, #0 ; CHECK-NEXT: lsr r6, r4, r6 ; CHECK-NEXT: orr r2, r6, r8, lsl r2 ; CHECK-NEXT: lslpl r2, r4, r5 ; CHECK-NEXT: cmp r3, #0 ; CHECK-NEXT: movwpl r1, #0 ; CHECK-NEXT: orr r1, r2, r1 ; CHECK-NEXT: pop {r4, r5, r6, r7, r8, pc} %f = call i37 @llvm.fshl.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) << 2) = 0b1000011 declare i7 @llvm.fshl.i7(i7, i7, i7) define i7 @fshl_i7_const_fold() { ; CHECK-LABEL: fshl_i7_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #67 ; CHECK-NEXT: bx lr %f = call i7 @llvm.fshl.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshl_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_1: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #128 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_2: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #120 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshl_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshl_i8_const_fold_overshift_3: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #0 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 0, i8 225, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshl_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_shift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r0, r0, r1, lsr #23 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. define i32 @fshl_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r0, r0, r1, lsr #23 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. define i64 @fshl_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshl_i64_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsr r1, r2, #23 ; CHECK-NEXT: orr r2, r1, r3, lsl #9 ; CHECK-NEXT: lsl r0, r0, #9 ; CHECK-NEXT: orr r1, r0, r3, lsr #23 ; CHECK-NEXT: mov r0, r2 ; CHECK-NEXT: bx lr %f = call i64 @llvm.fshl.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshl_i8_const_fold() { ; CHECK-LABEL: fshl_i8_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #128 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshl.i8(i8 255, i8 0, i8 7) ret i8 %f } ; Repeat everything for funnel shift right. ; General case - all operands can be variables. define i16 @fshr_i16(i16 %x, i16 %y, i16 %z) { ; CHECK-LABEL: fshr_i16: ; CHECK: @ %bb.0: ; CHECK-NEXT: pkhbt r0, r1, r0, lsl #16 ; CHECK-NEXT: and r1, r2, #15 ; CHECK-NEXT: lsr r0, r0, r1 ; CHECK-NEXT: bx lr %f = call i16 @llvm.fshr.i16(i16 %x, i16 %y, i16 %z) ret i16 %f } define i32 @fshr_i32(i32 %x, i32 %y, i32 %z) { ; CHECK-LABEL: fshr_i32: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r3, #31 ; CHECK-NEXT: lsl r0, r0, #1 ; CHECK-NEXT: bic r3, r3, r2 ; CHECK-NEXT: and r2, r2, #31 ; CHECK-NEXT: lsl r0, r0, r3 ; CHECK-NEXT: orr r0, r0, r1, lsr r2 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 %z) ret i32 %f } ; Verify that weird types are minimally supported. declare i37 @llvm.fshr.i37(i37, i37, i37) define i37 @fshr_i37(i37 %x, i37 %y, i37 %z) { ; CHECK-LABEL: fshr_i37: ; CHECK: @ %bb.0: ; CHECK-NEXT: .save {r4, r5, r6, r7, r8, r9, r11, lr} ; CHECK-NEXT: push {r4, r5, r6, r7, r8, r9, r11, lr} ; CHECK-NEXT: mov r8, r1 ; CHECK-NEXT: mov r9, r0 ; CHECK-NEXT: ldr r0, [sp, #32] ; CHECK-NEXT: mov r6, r3 ; CHECK-NEXT: ldr r1, [sp, #36] ; CHECK-NEXT: mov r7, r2 ; CHECK-NEXT: mov r2, #37 ; CHECK-NEXT: mov r3, #0 ; CHECK-NEXT: bl __aeabi_uldivmod ; CHECK-NEXT: add r0, r2, #27 ; CHECK-NEXT: lsl r6, r6, #27 ; CHECK-NEXT: and r1, r0, #63 ; CHECK-NEXT: lsl r2, r7, #27 ; CHECK-NEXT: orr r7, r6, r7, lsr #5 ; CHECK-NEXT: mov r6, #63 ; CHECK-NEXT: rsb r3, r1, #32 ; CHECK-NEXT: lsr r2, r2, r1 ; CHECK-NEXT: subs r12, r1, #32 ; CHECK-NEXT: bic r6, r6, r0 ; CHECK-NEXT: orr r2, r2, r7, lsl r3 ; CHECK-NEXT: lsl r5, r9, #1 ; CHECK-NEXT: lsrpl r2, r7, r12 ; CHECK-NEXT: lsl r0, r5, r6 ; CHECK-NEXT: subs r4, r6, #32 ; CHECK-NEXT: lsl r3, r8, #1 ; CHECK-NEXT: movwpl r0, #0 ; CHECK-NEXT: orr r3, r3, r9, lsr #31 ; CHECK-NEXT: orr r0, r0, r2 ; CHECK-NEXT: rsb r2, r6, #32 ; CHECK-NEXT: cmp r4, #0 ; CHECK-NEXT: lsr r1, r7, r1 ; CHECK-NEXT: lsr r2, r5, r2 ; CHECK-NEXT: orr r2, r2, r3, lsl r6 ; CHECK-NEXT: lslpl r2, r5, r4 ; CHECK-NEXT: cmp r12, #0 ; CHECK-NEXT: movwpl r1, #0 ; CHECK-NEXT: orr r1, r2, r1 ; CHECK-NEXT: pop {r4, r5, r6, r7, r8, r9, r11, pc} %f = call i37 @llvm.fshr.i37(i37 %x, i37 %y, i37 %z) ret i37 %f } ; extract(concat(0b1110000, 0b1111111) >> 2) = 0b0011111 declare i7 @llvm.fshr.i7(i7, i7, i7) define i7 @fshr_i7_const_fold() { ; CHECK-LABEL: fshr_i7_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #31 ; CHECK-NEXT: bx lr %f = call i7 @llvm.fshr.i7(i7 112, i7 127, i7 2) ret i7 %f } define i8 @fshr_i8_const_fold_overshift_1() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_1: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #254 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 15) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_2() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_2: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #225 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 15, i8 15, i8 11) ret i8 %f } define i8 @fshr_i8_const_fold_overshift_3() { ; CHECK-LABEL: fshr_i8_const_fold_overshift_3: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #255 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 0, i8 255, i8 8) ret i8 %f } ; With constant shift amount, this is 'extr'. define i32 @fshr_i32_const_shift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_shift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #23 ; CHECK-NEXT: orr r0, r0, r1, lsr #9 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 9) ret i32 %f } ; Check modulo math on shift amount. 41-32=9. define i32 @fshr_i32_const_overshift(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r0, r0, #23 ; CHECK-NEXT: orr r0, r0, r1, lsr #9 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 41) ret i32 %f } ; 64-bit should also work. 105-64 = 41. define i64 @fshr_i64_const_overshift(i64 %x, i64 %y) { ; CHECK-LABEL: fshr_i64_const_overshift: ; CHECK: @ %bb.0: ; CHECK-NEXT: lsl r2, r0, #23 ; CHECK-NEXT: lsl r1, r1, #23 ; CHECK-NEXT: orr r2, r2, r3, lsr #9 ; CHECK-NEXT: orr r1, r1, r0, lsr #9 ; CHECK-NEXT: mov r0, r2 ; CHECK-NEXT: bx lr %f = call i64 @llvm.fshr.i64(i64 %x, i64 %y, i64 105) ret i64 %f } ; This should work without any node-specific logic. define i8 @fshr_i8_const_fold() { ; CHECK-LABEL: fshr_i8_const_fold: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, #254 ; CHECK-NEXT: bx lr %f = call i8 @llvm.fshr.i8(i8 255, i8 0, i8 7) ret i8 %f } define i32 @fshl_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshl_i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshl.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define i32 @fshr_i32_shift_by_bitwidth(i32 %x, i32 %y) { ; CHECK-LABEL: fshr_i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: mov r0, r1 ; CHECK-NEXT: bx lr %f = call i32 @llvm.fshr.i32(i32 %x, i32 %y, i32 32) ret i32 %f } define <4 x i32> @fshl_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; CHECK-LABEL: fshl_v4i32_shift_by_bitwidth: ; CHECK: @ %bb.0: ; CHECK-NEXT: bx lr %f = call <4 x i32> @llvm.fshl.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> ) ret <4 x i32> %f } define <4 x i32> @fshr_v4i32_shift_by_bitwidth(<4 x i32> %x, <4 x i32> %y) { ; SCALAR-LABEL: fshr_v4i32_shift_by_bitwidth: ; SCALAR: @ %bb.0: ; SCALAR-NEXT: ldm sp, {r0, r1, r2, r3} ; SCALAR-NEXT: bx lr ; ; NEON-LABEL: fshr_v4i32_shift_by_bitwidth: ; NEON: @ %bb.0: ; NEON-NEXT: mov r0, sp ; NEON-NEXT: vld1.64 {d16, d17}, [r0] ; NEON-NEXT: vmov r0, r1, d16 ; NEON-NEXT: vmov r2, r3, d17 ; NEON-NEXT: bx lr %f = call <4 x i32> @llvm.fshr.v4i32(<4 x i32> %x, <4 x i32> %y, <4 x i32> ) ret <4 x i32> %f }