; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=riscv32 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV32IFD %s ; RUN: llc -mtriple=riscv64 -mattr=+d -verify-machineinstrs < %s \ ; RUN: | FileCheck -check-prefix=RV64IFD %s define double @fld(double *%a) nounwind { ; RV32IFD-LABEL: fld: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: fld ft0, 0(a0) ; RV32IFD-NEXT: fld ft1, 24(a0) ; RV32IFD-NEXT: fadd.d ft0, ft0, ft1 ; RV32IFD-NEXT: fsd ft0, 8(sp) ; RV32IFD-NEXT: lw a0, 8(sp) ; RV32IFD-NEXT: lw a1, 12(sp) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fld: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: fld ft0, 0(a0) ; RV64IFD-NEXT: fld ft1, 24(a0) ; RV64IFD-NEXT: fadd.d ft0, ft0, ft1 ; RV64IFD-NEXT: fmv.x.d a0, ft0 ; RV64IFD-NEXT: ret %1 = load double, double* %a %2 = getelementptr double, double* %a, i32 3 %3 = load double, double* %2 ; Use both loaded values in an FP op to ensure an fld is used, even for the ; soft float ABI %4 = fadd double %1, %3 ret double %4 } define void @fsd(double *%a, double %b, double %c) nounwind { ; RV32IFD-LABEL: fsd: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: sw a3, 8(sp) ; RV32IFD-NEXT: sw a4, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: sw a1, 8(sp) ; RV32IFD-NEXT: sw a2, 12(sp) ; RV32IFD-NEXT: fld ft1, 8(sp) ; RV32IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV32IFD-NEXT: fsd ft0, 0(a0) ; RV32IFD-NEXT: fsd ft0, 64(a0) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fsd: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: fmv.d.x ft0, a2 ; RV64IFD-NEXT: fmv.d.x ft1, a1 ; RV64IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV64IFD-NEXT: fsd ft0, 0(a0) ; RV64IFD-NEXT: fsd ft0, 64(a0) ; RV64IFD-NEXT: ret ; Use %b and %c in an FP op to ensure floating point registers are used, even ; for the soft float ABI %1 = fadd double %b, %c store double %1, double* %a %2 = getelementptr double, double* %a, i32 8 store double %1, double* %2 ret void } ; Check load and store to a global @G = global double 0.0 define double @fld_fsd_global(double %a, double %b) nounwind { ; RV32IFD-LABEL: fld_fsd_global: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: sw a2, 8(sp) ; RV32IFD-NEXT: sw a3, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: sw a0, 8(sp) ; RV32IFD-NEXT: sw a1, 12(sp) ; RV32IFD-NEXT: fld ft1, 8(sp) ; RV32IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV32IFD-NEXT: lui a0, %hi(G) ; RV32IFD-NEXT: fld ft1, %lo(G)(a0) ; RV32IFD-NEXT: fsd ft0, %lo(G)(a0) ; RV32IFD-NEXT: addi a0, a0, %lo(G) ; RV32IFD-NEXT: fld ft1, 72(a0) ; RV32IFD-NEXT: fsd ft0, 72(a0) ; RV32IFD-NEXT: fsd ft0, 8(sp) ; RV32IFD-NEXT: lw a0, 8(sp) ; RV32IFD-NEXT: lw a1, 12(sp) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fld_fsd_global: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: fmv.d.x ft0, a1 ; RV64IFD-NEXT: fmv.d.x ft1, a0 ; RV64IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV64IFD-NEXT: lui a0, %hi(G) ; RV64IFD-NEXT: fld ft1, %lo(G)(a0) ; RV64IFD-NEXT: fsd ft0, %lo(G)(a0) ; RV64IFD-NEXT: addi a1, a0, %lo(G) ; RV64IFD-NEXT: fld ft1, 72(a1) ; RV64IFD-NEXT: fmv.x.d a0, ft0 ; RV64IFD-NEXT: fsd ft0, 72(a1) ; RV64IFD-NEXT: ret ; Use %a and %b in an FP op to ensure floating point registers are used, even ; for the soft float ABI %1 = fadd double %a, %b %2 = load volatile double, double* @G store double %1, double* @G %3 = getelementptr double, double* @G, i32 9 %4 = load volatile double, double* %3 store double %1, double* %3 ret double %1 } ; Ensure that 1 is added to the high 20 bits if bit 11 of the low part is 1 define double @fld_fsd_constant(double %a) nounwind { ; RV32IFD-LABEL: fld_fsd_constant: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: sw a0, 8(sp) ; RV32IFD-NEXT: sw a1, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: lui a0, 912092 ; RV32IFD-NEXT: fld ft1, -273(a0) ; RV32IFD-NEXT: fadd.d ft0, ft0, ft1 ; RV32IFD-NEXT: fsd ft0, -273(a0) ; RV32IFD-NEXT: fsd ft0, 8(sp) ; RV32IFD-NEXT: lw a0, 8(sp) ; RV32IFD-NEXT: lw a1, 12(sp) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fld_fsd_constant: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: lui a1, 56 ; RV64IFD-NEXT: addiw a1, a1, -1353 ; RV64IFD-NEXT: slli a1, a1, 14 ; RV64IFD-NEXT: fld ft0, -273(a1) ; RV64IFD-NEXT: fmv.d.x ft1, a0 ; RV64IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV64IFD-NEXT: fmv.x.d a0, ft0 ; RV64IFD-NEXT: fsd ft0, -273(a1) ; RV64IFD-NEXT: ret %1 = inttoptr i32 3735928559 to double* %2 = load volatile double, double* %1 %3 = fadd double %a, %2 store double %3, double* %1 ret double %3 } declare void @notdead(i8*) define double @fld_stack(double %a) nounwind { ; RV32IFD-LABEL: fld_stack: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -32 ; RV32IFD-NEXT: sw ra, 28(sp) ; RV32IFD-NEXT: sw a0, 8(sp) ; RV32IFD-NEXT: sw a1, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: fsd ft0, 0(sp) ; RV32IFD-NEXT: addi a0, sp, 16 ; RV32IFD-NEXT: call notdead ; RV32IFD-NEXT: fld ft0, 16(sp) ; RV32IFD-NEXT: fld ft1, 0(sp) ; RV32IFD-NEXT: fadd.d ft0, ft0, ft1 ; RV32IFD-NEXT: fsd ft0, 8(sp) ; RV32IFD-NEXT: lw a0, 8(sp) ; RV32IFD-NEXT: lw a1, 12(sp) ; RV32IFD-NEXT: lw ra, 28(sp) ; RV32IFD-NEXT: addi sp, sp, 32 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fld_stack: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: addi sp, sp, -32 ; RV64IFD-NEXT: sd ra, 24(sp) ; RV64IFD-NEXT: fmv.d.x ft0, a0 ; RV64IFD-NEXT: fsd ft0, 8(sp) ; RV64IFD-NEXT: addi a0, sp, 16 ; RV64IFD-NEXT: call notdead ; RV64IFD-NEXT: fld ft0, 16(sp) ; RV64IFD-NEXT: fld ft1, 8(sp) ; RV64IFD-NEXT: fadd.d ft0, ft0, ft1 ; RV64IFD-NEXT: fmv.x.d a0, ft0 ; RV64IFD-NEXT: ld ra, 24(sp) ; RV64IFD-NEXT: addi sp, sp, 32 ; RV64IFD-NEXT: ret %1 = alloca double, align 8 %2 = bitcast double* %1 to i8* call void @notdead(i8* %2) %3 = load double, double* %1 %4 = fadd double %3, %a ; force load in to FPR64 ret double %4 } define void @fsd_stack(double %a, double %b) nounwind { ; RV32IFD-LABEL: fsd_stack: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -32 ; RV32IFD-NEXT: sw ra, 28(sp) ; RV32IFD-NEXT: sw a2, 8(sp) ; RV32IFD-NEXT: sw a3, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: sw a0, 8(sp) ; RV32IFD-NEXT: sw a1, 12(sp) ; RV32IFD-NEXT: fld ft1, 8(sp) ; RV32IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV32IFD-NEXT: fsd ft0, 16(sp) ; RV32IFD-NEXT: addi a0, sp, 16 ; RV32IFD-NEXT: call notdead ; RV32IFD-NEXT: lw ra, 28(sp) ; RV32IFD-NEXT: addi sp, sp, 32 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fsd_stack: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: addi sp, sp, -16 ; RV64IFD-NEXT: sd ra, 8(sp) ; RV64IFD-NEXT: fmv.d.x ft0, a1 ; RV64IFD-NEXT: fmv.d.x ft1, a0 ; RV64IFD-NEXT: fadd.d ft0, ft1, ft0 ; RV64IFD-NEXT: fsd ft0, 0(sp) ; RV64IFD-NEXT: mv a0, sp ; RV64IFD-NEXT: call notdead ; RV64IFD-NEXT: ld ra, 8(sp) ; RV64IFD-NEXT: addi sp, sp, 16 ; RV64IFD-NEXT: ret %1 = fadd double %a, %b ; force store from FPR64 %2 = alloca double, align 8 store double %1, double* %2 %3 = bitcast double* %2 to i8* call void @notdead(i8* %3) ret void } ; Test selection of store, .. define void @fsd_trunc(float* %a, double %b) nounwind noinline optnone { ; RV32IFD-LABEL: fsd_trunc: ; RV32IFD: # %bb.0: ; RV32IFD-NEXT: addi sp, sp, -16 ; RV32IFD-NEXT: sw a1, 8(sp) ; RV32IFD-NEXT: sw a2, 12(sp) ; RV32IFD-NEXT: fld ft0, 8(sp) ; RV32IFD-NEXT: fcvt.s.d ft0, ft0 ; RV32IFD-NEXT: fsw ft0, 0(a0) ; RV32IFD-NEXT: addi sp, sp, 16 ; RV32IFD-NEXT: ret ; ; RV64IFD-LABEL: fsd_trunc: ; RV64IFD: # %bb.0: ; RV64IFD-NEXT: fmv.d.x ft0, a1 ; RV64IFD-NEXT: fcvt.s.d ft0, ft0 ; RV64IFD-NEXT: fsw ft0, 0(a0) ; RV64IFD-NEXT: ret %1 = fptrunc double %b to float store float %1, float* %a, align 4 ret void }