// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code by Matt McCutchen, see the LICENSE file. #include "BigInteger.hh" BigInteger& BigInteger::operator =(const BigInteger &x) { // Calls like a = a have no effect if (this == &x) return *this; // Copy sign sign = x.sign; // Copy the rest mag = x.mag; return *this; } BigInteger::BigInteger(const Blk *b, Index blen, Sign s) : mag(b, blen) { switch (s) { case zero: if (!mag.isZero()) abort(); sign = zero; break; case positive: case negative: // If the magnitude is zero, force the sign to zero. sign = mag.isZero() ? zero : s; break; default: /* g++ seems to be optimizing out this case on the assumption * that the sign is a valid member of the enumeration. Oh well. */ abort(); } } BigInteger::BigInteger(const BigUnsigned &x, Sign s) : mag(x) { switch (s) { case zero: if (!mag.isZero()) abort(); sign = zero; break; case positive: case negative: // If the magnitude is zero, force the sign to zero. sign = mag.isZero() ? zero : s; break; default: /* g++ seems to be optimizing out this case on the assumption * that the sign is a valid member of the enumeration. Oh well. */ abort(); } } /* CONSTRUCTION FROM PRIMITIVE INTEGERS * Same idea as in BigUnsigned.cc, except that negative input results in a * negative BigInteger instead of an exception. */ // Done longhand to let us use initialization. BigInteger::BigInteger(unsigned long x) : mag(x) { sign = mag.isZero() ? zero : positive; } BigInteger::BigInteger(unsigned int x) : mag(x) { sign = mag.isZero() ? zero : positive; } BigInteger::BigInteger(unsigned short x) : mag(x) { sign = mag.isZero() ? zero : positive; } // For signed input, determine the desired magnitude and sign separately. namespace { template BigInteger::Blk magOf(X x) { /* UX(...) cast needed to stop short(-2^15), which negates to * itself, from sign-extending in the conversion to Blk. */ return BigInteger::Blk(x < 0 ? UX(-x) : x); } template BigInteger::Sign signOf(X x) { return (x == 0) ? BigInteger::zero : (x > 0) ? BigInteger::positive : BigInteger::negative; } } BigInteger::BigInteger(long x) : sign(signOf(x)), mag(magOf(x)) {} BigInteger::BigInteger(int x) : sign(signOf(x)), mag(magOf(x)) {} BigInteger::BigInteger(short x) : sign(signOf(x)), mag(magOf(x)) {} // CONVERSION TO PRIMITIVE INTEGERS /* Reuse BigUnsigned's conversion to an unsigned primitive integer. * The friend is a separate function rather than * BigInteger::convertToUnsignedPrimitive to avoid requiring BigUnsigned to * declare BigInteger. */ template inline X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a) { return a.convertToPrimitive(); } template X BigInteger::convertToUnsignedPrimitive() const { if (sign == negative) abort(); else return convertBigUnsignedToPrimitiveAccess(mag); } /* Similar to BigUnsigned::convertToPrimitive, but split into two cases for * nonnegative and negative numbers. */ template X BigInteger::convertToSignedPrimitive() const { if (sign == zero) return 0; else if (mag.getLength() == 1) { // The single block might fit in an X. Try the conversion. Blk b = mag.getBlock(0); if (sign == positive) { X x = X(b); if (x >= 0 && Blk(x) == b) return x; } else { X x = -X(b); /* UX(...) needed to avoid rejecting conversion of * -2^15 to a short. */ if (x < 0 && Blk(UX(-x)) == b) return x; } // Otherwise fall through. } abort(); } unsigned long BigInteger::toUnsignedLong () const { return convertToUnsignedPrimitive (); } unsigned int BigInteger::toUnsignedInt () const { return convertToUnsignedPrimitive (); } unsigned short BigInteger::toUnsignedShort() const { return convertToUnsignedPrimitive (); } long BigInteger::toLong () const { return convertToSignedPrimitive (); } int BigInteger::toInt () const { return convertToSignedPrimitive (); } short BigInteger::toShort () const { return convertToSignedPrimitive (); } // COMPARISON BigInteger::CmpRes BigInteger::compareTo(const BigInteger &x) const { // A greater sign implies a greater number if (sign < x.sign) return less; else if (sign > x.sign) return greater; else switch (sign) { // If the signs are the same... case zero: return equal; // Two zeros are equal case positive: // Compare the magnitudes return mag.compareTo(x.mag); case negative: // Compare the magnitudes, but return the opposite result return CmpRes(-mag.compareTo(x.mag)); default: abort(); } } /* COPY-LESS OPERATIONS * These do some messing around to determine the sign of the result, * then call one of BigUnsigned's copy-less operations. */ // See remarks about aliased calls in BigUnsigned.cc . #define DTRT_ALIASED(cond, op) \ if (cond) { \ BigInteger tmpThis; \ tmpThis.op; \ *this = tmpThis; \ return; \ } void BigInteger::add(const BigInteger &a, const BigInteger &b) { DTRT_ALIASED(this == &a || this == &b, add(a, b)); // If one argument is zero, copy the other. if (a.sign == zero) operator =(b); else if (b.sign == zero) operator =(a); // If the arguments have the same sign, take the // common sign and add their magnitudes. else if (a.sign == b.sign) { sign = a.sign; mag.add(a.mag, b.mag); } else { // Otherwise, their magnitudes must be compared. switch (a.mag.compareTo(b.mag)) { case equal: // If their magnitudes are the same, copy zero. mag = 0; sign = zero; break; // Otherwise, take the sign of the greater, and subtract // the lesser magnitude from the greater magnitude. case greater: sign = a.sign; mag.subtract(a.mag, b.mag); break; case less: sign = b.sign; mag.subtract(b.mag, a.mag); break; } } } void BigInteger::subtract(const BigInteger &a, const BigInteger &b) { // Notice that this routine is identical to BigInteger::add, // if one replaces b.sign by its opposite. DTRT_ALIASED(this == &a || this == &b, subtract(a, b)); // If a is zero, copy b and flip its sign. If b is zero, copy a. if (a.sign == zero) { mag = b.mag; // Take the negative of _b_'s, sign, not ours. // Bug pointed out by Sam Larkin on 2005.03.30. sign = Sign(-b.sign); } else if (b.sign == zero) operator =(a); // If their signs differ, take a.sign and add the magnitudes. else if (a.sign != b.sign) { sign = a.sign; mag.add(a.mag, b.mag); } else { // Otherwise, their magnitudes must be compared. switch (a.mag.compareTo(b.mag)) { // If their magnitudes are the same, copy zero. case equal: mag = 0; sign = zero; break; // If a's magnitude is greater, take a.sign and // subtract a from b. case greater: sign = a.sign; mag.subtract(a.mag, b.mag); break; // If b's magnitude is greater, take the opposite // of b.sign and subtract b from a. case less: sign = Sign(-b.sign); mag.subtract(b.mag, a.mag); break; } } } void BigInteger::multiply(const BigInteger &a, const BigInteger &b) { DTRT_ALIASED(this == &a || this == &b, multiply(a, b)); // If one object is zero, copy zero and return. if (a.sign == zero || b.sign == zero) { sign = zero; mag = 0; return; } // If the signs of the arguments are the same, the result // is positive, otherwise it is negative. sign = (a.sign == b.sign) ? positive : negative; // Multiply the magnitudes. mag.multiply(a.mag, b.mag); } /* * DIVISION WITH REMAINDER * Please read the comments before the definition of * `BigUnsigned::divideWithRemainder' in `BigUnsigned.cc' for lots of * information you should know before reading this function. * * Following Knuth, I decree that x / y is to be * 0 if y==0 and floor(real-number x / y) if y!=0. * Then x % y shall be x - y*(integer x / y). * * Note that x = y * (x / y) + (x % y) always holds. * In addition, (x % y) is from 0 to y - 1 if y > 0, * and from -(|y| - 1) to 0 if y < 0. (x % y) = x if y = 0. * * Examples: (q = a / b, r = a % b) * a b q r * === === === === * 4 3 1 1 * -4 3 -2 2 * 4 -3 -2 -2 * -4 -3 1 -1 */ void BigInteger::divideWithRemainder(const BigInteger &b, BigInteger &q) { // Defend against aliased calls; // same idea as in BigUnsigned::divideWithRemainder . if (this == &q) abort(); if (this == &b || &q == &b) { BigInteger tmpB(b); divideWithRemainder(tmpB, q); return; } // Division by zero gives quotient 0 and remainder *this if (b.sign == zero) { q.mag = 0; q.sign = zero; return; } // 0 / b gives quotient 0 and remainder 0 if (sign == zero) { q.mag = 0; q.sign = zero; return; } // Here *this != 0, b != 0. // Do the operands have the same sign? if (sign == b.sign) { // Yes: easy case. Quotient is zero or positive. q.sign = positive; } else { // No: harder case. Quotient is negative. q.sign = negative; // Decrease the magnitude of the dividend by one. mag--; /* * We tinker with the dividend before and with the * quotient and remainder after so that the result * comes out right. To see why it works, consider the following * list of examples, where A is the magnitude-decreased * a, Q and R are the results of BigUnsigned division * with remainder on A and |b|, and q and r are the * final results we want: * * a A b Q R q r * -3 -2 3 0 2 -1 0 * -4 -3 3 1 0 -2 2 * -5 -4 3 1 1 -2 1 * -6 -5 3 1 2 -2 0 * * It appears that we need a total of 3 corrections: * Decrease the magnitude of a to get A. Increase the * magnitude of Q to get q (and make it negative). * Find r = (b - 1) - R and give it the desired sign. */ } // Divide the magnitudes. mag.divideWithRemainder(b.mag, q.mag); if (sign != b.sign) { // More for the harder case (as described): // Increase the magnitude of the quotient by one. q.mag++; // Modify the remainder. mag.subtract(b.mag, mag); mag--; } // Sign of the remainder is always the sign of the divisor b. sign = b.sign; // Set signs to zero as necessary. (Thanks David Allen!) if (mag.isZero()) sign = zero; if (q.mag.isZero()) q.sign = zero; // WHEW!!! } // Negation void BigInteger::negate(const BigInteger &a) { DTRT_ALIASED(this == &a, negate(a)); // Copy a's magnitude mag = a.mag; // Copy the opposite of a.sign sign = Sign(-a.sign); } // INCREMENT/DECREMENT OPERATORS // Prefix increment BigInteger& BigInteger::operator ++() { if (sign == negative) { mag--; if (mag == 0) sign = zero; } else { mag++; sign = positive; // if not already } return *this; } // Postfix increment BigInteger BigInteger::operator ++(int) { BigInteger temp(*this); operator ++(); return temp; } // Prefix decrement BigInteger& BigInteger::operator --() { if (sign == positive) { mag--; if (mag == 0) sign = zero; } else { mag++; sign = negative; } return *this; } // Postfix decrement BigInteger BigInteger::operator --(int) { BigInteger temp(*this); operator --(); return temp; }