# Trace Processor
_The Trace Processor is a C++ library
([/src/trace_processor](/src/trace_processor)) that ingests traces encoded in a
wide variety of formats and exposes an SQL interface for querying trace events
contained in a consistent set of tables. It also has other features including
computation of summary metrics, annotating the trace with user-friendly
descriptions and deriving new events from the contents of the trace._
![Trace processor block diagram](/docs/images/trace-processor.png)
## Quickstart
The [quickstart](/docs/quickstart/trace-analysis.md) provides a quick overview
on how to run SQL queries against traces using trace processor.
## Introduction
Events in a trace are optimized for fast, low-overhead recording. Therefore
traces need significant data processing to extract meaningful information from
them. This is compounded by the number of legacy formats which are still in use and
need to be supported in trace analysis tools.
The trace processor abstracts this complexity by parsing traces, extracting the
data inside, and exposing it in a set of database tables which can be queried
with SQL.
Features of the trace processor include:
* Execution of SQL queries on a custom, in-memory, columnar database backed by
the SQLite query engine.
* Metrics subsystem which allows computation of summarized view of the trace
(e.g. CPU or memory usage of a process, time taken for app startup etc.).
* Annotating events in the trace with user-friendly descriptions, providing
context and explanation of events to newer users.
* Creation of new events derived from the contents of the trace.
The formats supported by trace processor include:
* Perfetto native protobuf format
* Linux ftrace
* Android systrace
* Chrome JSON (including JSON embedding Android systrace text)
* Fuchsia binary format
* [Ninja](https://ninja-build.org/) logs (the build system)
The trace processor is embedded in a wide variety of trace analysis tools, including:
* [trace_processor](/docs/analysis/trace-processor.md), a standalone binary
providing a shell interface (and the reference embedder).
* [Perfetto UI](https://ui.perfetto.dev), in the form of a WebAssembly module.
* [Android Graphics Inspector](https://gpuinspector.dev/).
* [Android Studio](https://developer.android.com/studio/).
## Concepts
The trace processor has some foundational terminology and concepts which are
used in the rest of documentation.
### Events
In the most general sense, a trace is simply a collection of timestamped
"events". Events can have associated metadata and context which allows them to
be interpreted and analyzed.
Events form the foundation of trace processor and are one of two types: slices
and counters.
#### Slices
![Examples of slices](/docs/images/slices.png)
A slice refers to an interval of time with some data describing what was
happening in that interval. Some example of slices include:
* Scheduling slices for each CPU
* Atrace slices on Android
* Userspace slices from Chrome
#### Counters
![Examples of counters](/docs/images/counters.png)
A counter is a continuous value which varies over time. Some examples of
counters include:
* CPU frequency for each CPU core
* RSS memory events - both from the kernel and polled from /proc/stats
* atrace counter events from Android
* Chrome counter events
### Tracks
A track is a named partition of events of the same type and the same associated
context. For example:
* Scheduling slices have one track for each CPU
* Sync userspace slice have one track for each thread which emitted an event
* Async userspace slices have one track for each “cookie” linking a set of async
events
The most intuitive way to think of a track is to imagine how they would be drawn
in a UI; if all the events are in a single row, they belong to the same track.
For example, all the scheduling events for CPU 5 are on the same track:
![CPU slices track](/docs/images/cpu-slice-track.png)
Tracks can be split into various types based on the type of event they contain
and the context they are associated with. Examples include:
* Global tracks are not associated to any context and contain slices
* Thread tracks are associated to a single thread and contain slices
* Counter tracks are not associated to any context and contain counters
* CPU counter tracks are associated to a single CPU and contain counters
### Thread and process identifiers
The handling of threads and processes needs special care when considered in the
context of tracing; identifiers for threads and processes (e.g. `pid`/`tgid` and
`tid` in Android/macOS/Linux) can be reused by the operating system over the
course of a trace. This means they cannot be relied upon as a unique identifier
when querying tables in trace processor.
To solve this problem, the trace processor uses `utid` (_unique_ tid) for
threads and `upid` (_unique_ pid) for processes. All references to threads and
processes (e.g. in CPU scheduling data, thread tracks) uses `utid` and `upid`
instead of the system identifiers.
## Object-oriented tables
Modeling an object with many types is a common problem in trace processor. For
example, tracks can come in many varieties (thread tracks, process tracks,
counter tracks etc). Each type has a piece of data associated to it unique to
that type; for example, thread tracks have a `utid` of the thread, counter
tracks have the `unit` of the counter.
To solve this problem in object-oriented languages, a `Track` class could be
created and inheritance used for all subclasses (e.g. `ThreadTrack` and
`CounterTrack` being subclasses of `Track`, `ProcessCounterTrack` being a
subclass of `CounterTrack` etc).
![Object-oriented table diagram](/docs/images/oop-table-inheritance.png)
In trace processor, this "object-oriented" approach is replicated by having
different tables for each type of object. For example, we have a `track` table
as the "root" of the hierarchy with the `thread_track` and `counter_track`
tables "inheriting from" the `track` table.
NOTE: [The appendix below](#appendix-table-inheritance) gives the exact rules
for inheritance between tables for interested readers.
Inheritance between the tables works in the natural way (i.e. how it works in
OO languages) and is best summarized by a diagram.
![SQL table inheritance diagram](/docs/images/tp-table-inheritance.png)
NOTE: For an up-to-date of how tables currently inherit from each other as well
as a comprehensive reference of all the column and how they are inherited see
the [SQL tables](/docs/analysis/sql-tables.autogen) reference page.
## Writing Queries
### Context using tracks
A common question when querying tables in trace processor is: "how do I obtain
the process or thread for a slice?". Phrased more generally, the question is
"how do I get the context for an event?".
In trace processor, any context associated with all events on a track is found
on the associated `track` tables.
For example, to obtain the `utid` of any thread which emitted a `measure` slice
```sql
SELECT utid
FROM slice
JOIN thread_track ON thread_track.id = slice.track_id
WHERE slice.name = 'measure'
```
Similarly, to obtain the `upid`s of any process which has a `mem.swap` counter
greater than 1000
```sql
SELECT upid
FROM counter
JOIN process_counter_track ON process_counter_track.id = slice.track_id
WHERE process_counter_track.name = 'mem.swap' AND value > 1000
```
If the source and type of the event is known beforehand (which is generally the
case), the following can be used to find the `track` table to join with
| Event type | Associated with | Track table | Constraint in WHERE clause |
| :--------- | ------------------ | --------------------- | -------------------------- |
| slice | N/A (global scope) | track | `type = 'track'` |
| slice | thread | thread_track | N/A |
| slice | process | process_track | N/A |
| counter | N/A (global scope) | counter_track | `type = 'counter_track'` |
| counter | thread | thread_counter_track | N/A |
| counter | process | process_counter_track | N/A |
| counter | cpu | cpu_counter_track | N/A |
On the other hand, sometimes the source is not known. In this case, joining with
the `track `table and looking up the `type` column will give the exact track
table to join with.
For example, to find the type of track for `measure` events, the following query
could be used.
```sql
SELECT type
FROM slice
JOIN track ON track.id = slice.track_id
WHERE slice.name = 'measure'
```
### Thread and process tables
While obtaining `utid`s and `upid`s are a step in the right direction, generally
users want the original `tid`, `pid`, and process/thread names.
The `thread` and `process` tables map `utid`s and `upid`s to threads and
processes respectively. For example, to lookup the thread with `utid` 10
```sql
SELECT tid, name
FROM thread
WHERE utid = 10
```
The `thread` and `process` tables can also be joined with the associated track
tables directly to jump directly from the slice or counter to the information
about processes and threads.
For example, to get a list of all the threads which emitted a `measure` slice
```sql
SELECT thread.name AS thread_name
FROM slice
JOIN thread_track ON slice.track_id = thread_track.id
JOIN thread USING(utid)
WHERE slice.name = 'measure'
GROUP BY thread_name
```
## Operator tables
SQL queries are usually sufficient to retrieve data from trace processor.
Sometimes though, certain constructs can be difficult to express pure SQL.
In these situations, trace processor has special "operator tables" which solve
a particular problem in C++ but expose an SQL interface for queries to take
advantage of.
### Span join
Span join is a custom operator table which computes the intersection of
spans of time from two tables or views. A column (called the *partition*)
can optionally be specified which divides the rows from each table into
partitions before computing the intersection.
![Span join block diagram](/docs/images/span-join.png)
```sql
-- Get all the scheduling slices
CREATE VIEW sp_sched AS
SELECT ts, dur, cpu, utid
FROM sched
-- Get all the cpu frequency slices
CREATE VIEW sp_frequency AS
SELECT
ts,
lead(ts) OVER (PARTITION BY cpu ORDER BY ts) - ts as dur,
cpu,
value as freq
FROM counter
-- Create the span joined table which combines cpu frequency with
-- scheduling slices.
CREATE VIRTUAL TABLE sched_with_frequency
USING SPAN_JOIN(sp_sched PARTITIONED cpu, sp_frequency PARTITIONED cpu)
-- This span joined table can be queried as normal and has the columns from both
-- tables.
SELECT ts, dur, cpu, utid, freq
FROM sched_with_frequency
```
NOTE: A partition can be specified on neither, either or both tables. If
specified on both, the same column name has to be specified on each table.
WARNING: An important restriction on span joined tables is that spans from
the same table in the same partition *cannot* overlap. For performance
reasons, span join does not attempt to detect and error out in this situation;
instead, incorrect rows will silently be produced.
### Ancestor slice
ancestor_slice is a custom operator table that takes a
[slice table's id column](/docs/analysis/sql-tables.autogen#slice) and computes
all slices on the same track that are direct parents above that id (i.e. given
a slice id it will return as rows all slices that can be found by following
the parent_id column to the top slice (depth = 0)).
The returned format is the same as the
[slice table](/docs/analysis/sql-tables.autogen#slice)
For example, the following finds the top level slice given a bunch of slices of
interest.
```sql
CREATE VIEW interesting_slices AS
SELECT id, ts, dur, track_id
FROM slice WHERE name LIKE "%interesting slice name%";
SELECT
*
FROM
interesting_slices LEFT JOIN
ancestor_slice(interesting_slices.id) AS ancestor ON ancestor.depth = 0
```
### Descendant slice
descendant_slice is a custom operator table that takes a
[slice table's id column](/docs/analysis/sql-tables.autogen#slice) and
computes all slices on the same track that are nested under that id (i.e.
all slices that are on the same track at the same time frame with a depth
greater than the given slice's depth.
The returned format is the same as the
[slice table](/docs/analysis/sql-tables.autogen#slice)
For example, the following finds the number of slices under each slice of
interest.
```sql
CREATE VIEW interesting_slices AS
SELECT id, ts, dur, track_id
FROM slice WHERE name LIKE "%interesting slice name%";
SELECT
*
(
SELECT
COUNT(*) AS total_descendants
FROM descendant_slice(interesting_slice.id)
)
FROM interesting_slices
```
### Connected/Following/Preceding flows
DIRECTLY_CONNECTED_FLOW, FOLLOWING_FLOW and PRECEDING_FLOW are custom operator
tables that take a
[slice table's id column](/docs/analysis/sql-tables.autogen#slice) and collect
all entries of [flow table](/docs/analysis/sql-tables.autogen#flow), that are
directly or indirectly connected to the given starting slice.
`DIRECTLY_CONNECTED_FLOW(start_slice_id)` - contains all entries of
[flow table](/docs/analysis/sql-tables.autogen#flow) that are present in any
chain of kind: `flow[0] -> flow[1] -> ... -> flow[n]`, where
`flow[i].slice_out = flow[i+1].slice_in` and `flow[0].slice_out = start_slice_id
OR start_slice_id = flow[n].slice_in`.
NOTE: Unlike the following/preceding flow functions, this function will not
include flows connected to ancestors or descendants while searching for flows
from a slice. It only includes the slices in the directly connected chain.
`FOLLOWING_FLOW(start_slice_id)` - contains all flows which can be reached from
a given slice via recursively following from flow's outgoing slice to its
incoming one and from a reached slice to its child. The return table contains
all entries of [flow table](/docs/analysis/sql-tables.autogen#flow) that are
present in any chain of kind: `flow[0] -> flow[1] -> ... -> flow[n]`, where
`flow[i+1].slice_out IN DESCENDANT_SLICE(flow[i].slice_in) OR
flow[i+1].slice_out = flow[i].slice_in` and `flow[0].slice_out IN
DESCENDANT_SLICE(start_slice_id) OR flow[0].slice_out = start_slice_id`.
`PRECEDING_FLOW(start_slice_id)` - contains all flows which can be reached from
a given slice via recursively following from flow's incoming slice to its
outgoing one and from a reached slice to its parent. The return table contains
all entries of [flow table](/docs/analysis/sql-tables.autogen#flow) that are
present in any chain of kind: `flow[n] -> flow[n-1] -> ... -> flow[0]`, where
`flow[i].slice_in IN ANCESTOR_SLICE(flow[i+1].slice_out) OR flow[i].slice_in =
flow[i+1].slice_out` and `flow[0].slice_in IN ANCESTOR_SLICE(start_slice_id) OR
flow[0].slice_in = start_slice_id`.
```sql
--number of following flows for each slice
SELECT (SELECT COUNT(*) FROM FOLLOWING_FLOW(slice_id)) as following FROM slice;
```
## Metrics
TIP: To see how to add to add a new metric to trace processor, see the checklist
[here](/docs/contributing/common-tasks.md#new-metric).
The metrics subsystem is a significant part of trace processor and thus is
documented on its own [page](/docs/analysis/metrics.md).
## Annotations
TIP: To see how to add to add a new annotation to trace processor, see the
checklist [here](/docs/contributing/common-tasks.md#new-annotation).
Annotations attach a human-readable description to a slice in the trace. This
can include information like the source of a slice, why a slice is important and
links to documentation where the viewer can learn more about the slice.
In essence, descriptions act as if an expert was telling the user what the slice
means.
For example, consider the `inflate` slice which occurs during view inflation in
Android. We can add the following description and link:
**Description**: Constructing a View hierarchy from pre-processed XML via
LayoutInflater#layout. This includes constructing all of the View objects in the
hierarchy, and applying styled attributes.
## Creating derived events
TIP: To see how to add to add a new annotation to trace processor, see the
checklist [here](/docs/contributing/common-tasks.md#new-annotation).
This feature allows creation of new events (slices and counters) from the data
in the trace. These events can then be displayed in the UI tracks as if they
were part of the trace itself.
This is useful as often the data in the trace is very low-level. While low
level information is important for experts to perform deep debugging, often
users are just looking for a high level overview without needing to consider
events from multiple locations.
For example, an app startup in Android spans multiple components including
`ActivityManager`, `system_server`, and the newly created app process derived
from `zygote`. Most users do not need this level of detail; they are only
interested in a single slice spanning the entire startup.
Creating derived events is tied very closely to
[metrics subsystem](/docs/analysis/metrics.md); often SQL-based metrics need to
create higher-level abstractions from raw events as intermediate artifacts.
From previous example, the
[startup metric](/src/trace_processor/metrics/android/android_startup.sql)
creates the exact `launching` slice we want to display in the UI.
The other benefit of aligning the two is that changes in metrics are
automatically kept in sync with what the user sees in the UI.
## Alerts
Alerts are used to draw the attention of the user to interesting parts of the
trace; this are usually warnings or errors about anomalies which occurred in the
trace.
Currently, alerts are not implemented in the trace processor but the API to
create derived events was designed with them in mind. We plan on adding another
column `alert_type` (name to be finalized) to the annotations table which can
have the value `warning`, `error` or `null`. Depending on this value, the
Perfetto UI will flag these events to the user.
NOTE: we do not plan on supporting case where alerts need to be added to
existing events. Instead, new events should be created using annotations
and alerts added on these instead; this is because the trace processor
storage is monotonic-append-only.
## Python API
The trace processor Python API is built on the existing HTTP interface of `trace processor`
and is available as part of the standalone build. The API allows you to load in traces and
query tables and run metrics without requiring the `trace_processor` binary to be
downloaded or installed.
### Setup
```
pip install perfetto
```
NOTE: The API is only compatible with Python3.
```python
from perfetto.trace_processor import TraceProcessor
# Initialise TraceProcessor with a trace file
tp = TraceProcessor(file_path='trace.perfetto-trace')
```
NOTE: The TraceProcessor can be initialized in a combination of ways including:
- An address at which there exists a running instance of `trace_processor` with a
loaded trace (e.g. `TraceProcessor(addr='localhost:9001')`)
- An address at which there exists a running instance of `trace_processor` and
needs a trace to be loaded in
(e.g. `TraceProcessor(addr='localhost:9001', file_path='trace.perfetto-trace')`)
- A path to a `trace_processor` binary and the trace to be loaded in
(e.g. `TraceProcessor(bin_path='./trace_processor', file_path='trace.perfetto-trace')`)
### API
The `trace_processor.api` module contains the `TraceProcessor` class which provides various
functions that can be called on the loaded trace. For more information on how to use
these functions, see this [`example`](/src/trace_processor/python/example.py).
#### Query
The query() function takes an SQL query as input and returns an iterator through the rows
of the result.
```python
from perfetto.trace_processor import TraceProcessor
tp = TraceProcessor(file_path='trace.perfetto-trace')
qr_it = tp.query('SELECT ts, dur, name FROM slice')
for row in qr_it:
print(row.ts, row.dur, row.name)
```
**Output**
```
261187017446933 358594 eglSwapBuffersWithDamageKHR
261187017518340 357 onMessageReceived
261187020825163 9948 queueBuffer
261187021345235 642 bufferLoad
261187121345235 153 query
...
```
The QueryResultIterator can also be converted to a Pandas DataFrame, although this
requires you to have both the `NumPy` and `Pandas` modules installed.
```python
from perfetto.trace_processor import TraceProcessor
tp = TraceProcessor(file_path='trace.perfetto-trace')
qr_it = tp.query('SELECT ts, dur, name FROM slice')
qr_df = qr_it.as_pandas_dataframe()
print(qr_df.to_string())
```
**Output**
```
ts dur name
-------------------- -------------------- ---------------------------
261187017446933 358594 eglSwapBuffersWithDamageKHR
261187017518340 357 onMessageReceived
261187020825163 9948 queueBuffer
261187021345235 642 bufferLoad
261187121345235 153 query
...
```
Furthermore, you can use the query result in a Pandas DataFrame format to easily
make visualisations from the trace data.
```python
from perfetto.trace_processor import TraceProcessor
tp = TraceProcessor(file_path='trace.perfetto-trace')
qr_it = tp.query('SELECT ts, value FROM counter WHERE track_id=50')
qr_df = qr_it.as_pandas_dataframe()
qr_df = qr_df.replace(np.nan,0)
qr_df = qr_df.set_index('ts')['value'].plot()
```
**Output**
![Graph made frpm the query results](/docs/images/example_pd_graph.png)
#### Metric
The metric() function takes in a list of trace metrics and returns the results as a Protobuf.
```python
from perfetto.trace_processor import TraceProcessor
tp = TraceProcessor(file_path='trace.perfetto-trace')
ad_cpu_metrics = tp.metric(['android_cpu'])
print(ad_cpu_metrics)
```
**Output**
```
metrics {
android_cpu {
process_info {
name: "/system/bin/init"
threads {
name: "init"
core {
id: 1
metrics {
mcycles: 1
runtime_ns: 570365
min_freq_khz: 1900800
max_freq_khz: 1900800
avg_freq_khz: 1902017
}
}
core {
id: 3
metrics {
mcycles: 0
runtime_ns: 366406
min_freq_khz: 1900800
max_freq_khz: 1900800
avg_freq_khz: 1902908
}
}
...
}
...
}
process_info {
name: "/system/bin/logd"
threads {
name: "logd.writer"
core {
id: 0
metrics {
mcycles: 8
runtime_ns: 33842357
min_freq_khz: 595200
max_freq_khz: 1900800
avg_freq_khz: 1891825
}
}
core {
id: 1
metrics {
mcycles: 9
runtime_ns: 36019300
min_freq_khz: 1171200
max_freq_khz: 1900800
avg_freq_khz: 1887969
}
}
...
}
...
}
...
}
}
```
### HTTP
The `trace_processor.http` module contains the `TraceProcessorHttp` class which
provides methods to make HTTP requests to an address at which there already
exists a running instance of `trace_processor` with a trace loaded in. All
results are returned in Protobuf format
(see [`trace_processor_proto`](/protos/perfetto/trace_processor/trace_processor.proto)).
Some functions include:
* `execute_query()` - Takes in an SQL query and returns a `QueryResult` Protobuf
message
* `compute_metric()` - Takes in a list of trace metrics and returns a
`ComputeMetricResult` Protobuf message
* `status()` - Returns a `StatusResult` Protobuf message
## Testing
Trace processor is mainly tested in two ways:
1. Unit tests of low-level building blocks
2. "Diff" tests which parse traces and check the output of queries
### Unit tests
Unit testing trace processor is the same as in other parts of Perfetto and
other C++ projects. However, unlike the rest of Perfetto, unit testing is
relatively light in trace processor.
We have discovered over time that unit tests are generally too brittle
when dealing with code which parses traces leading to painful, mechanical
changes being needed when refactorings happen.
Because of this, we choose to focus on diff tests for most areas (e.g.
parsing events, testing schema of tables, testing metrics etc.) and only
use unit testing for the low-level building blocks on which the rest of
trace processor is built.
### Diff tests
Diff tests are essentially integration tests for trace processor and the
main way trace processor is tested.
Each diff test takes as input a) a trace file b) a query file *or* a metric
name. It runs `trace_processor_shell` to parse the trace and then executes
the query/metric. The result is then compared to a 'golden' file and any
difference is highlighted.
All diff tests are organized under [test/trace_processor](/test/trace_processor)
and are run by the script
[`tools/diff_test_trace_processor.py`](/tools/diff_test_trace_processor.py).
New tests can be added with the helper script
[`tools/add_tp_diff_test.py`](/tools/add_tp_diff_test.py).
NOTE: `trace_processor_shell` and associated proto descriptors needs to be
built before running `tools/diff_test_trace_processor.py`. The easiest way
to do this is to run `tools/ninja -C ` both initially and on
every change to trace processor code or builtin metrics.
#### Choosing where to add diff tests
When adding a new test with `tools/add_tp_diff_test.py`, the user is
prompted for a folder to add the new test to. Often this can be confusing
as a test can fall into more than one category. This section is a guide
to decide which folder to choose.
Broadly, there are two categories which all folders fall into:
1. __"Area" folders__ which encompass a "vertical" area of interest
e.g. startup/ contains Android app startup related tests or chrome/
contains all Chrome related tests.
2. __"Feature" folders__ which encompass a particular feature of
trace processor e.g. process_tracking/ tests the lifetime tracking of
processes, span_join/ tests the span join operator.
"Area" folders should be preferred for adding tests unless the test is
applicable to more than one "area"; in this case, one of "feature" folders
can be used instead.
Here are some common scenarios in which new tests may be added and
answers on where to add the test:
__Scenario__: A new event is being parsed, the focus of the test is to ensure
the event is being parsed correctly and the event is focused on a single
vertical "Area".
_Answer_: Add the test in one of the "Area" folders.
__Scenario__: A new event is being parsed and the focus of the test is to ensure
the event is being parsed correctly and the event is applicable to more than one
vertical "Area".
_Answer_: Add the test to the parsing/ folder.
__Scenario__: A new metric is being added and the focus of the test is to
ensure the metric is being correctly computed.
_Answer_: Add the test in one of the "Area" folders.
__Scenario__: A new dynamic table is being added and the focus of the test is to
ensure the dynamic table is being correctly computed...
_Answer_: Add the test to the dynamic/ folder
__Scenario__: The interals of trace processor are being modified and the test
is to ensure the trace processor is correctly filtering/sorting important
built-in tables.
_Answer_: Add the test to the tables/ folder.
## Appendix: table inheritance
Concretely, the rules for inheritance between tables works are as follows:
* Every row in a table has an `id` which is unique for a hierarchy of tables.
* For example, every `track` will have an `id` which is unique among all
tracks (regardless of the type of track)
* If a table C inherits from P, each row in C will also be in P _with the same
id_
* This allows for ids to act as "pointers" to rows; lookups by id can be
performed on any table which has that row
* For example, every `process_counter_track` row will have a matching row in
`counter_track` which will itself have matching rows in `track`
* If a table C with columns `A` and `B` inherits from P with column `A`, `A`
will have the same data in both C and P
* For example, suppose
* `process_counter_track` has columns `name`, `unit` and `upid`
* `counter_track` has `name` and `unit`
* `track` has `name`
* Every row in `process_counter_track` will have the same `name` for the row
with the same id in `track` and `counter_track`
* Similarly, every row in `process_counter_track` will have both the same
`name ` and `unit` for the row with the same id in `counter_track`
* Every row in a table has a `type` column. This specifies the _most specific_
table this row belongs to.
* This allows _dynamic casting_ of a row to its most specific type
* For example, for if a row in the `track` is actually a
`process_counter_track`, it's type column will be `process_counter_track`.