// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include "pw_stream/memory_stream.h" #include "gtest/gtest.h" #include "pw_preprocessor/compiler.h" namespace pw::stream { namespace { // Size of the in-memory buffer to use for this test. constexpr size_t kSinkBufferSize = 1013; struct TestStruct { uint8_t day; uint8_t month; uint16_t year; }; constexpr TestStruct kExpectedStruct = {.day = 18, .month = 5, .year = 2020}; std::array memory_buffer; TEST(MemoryWriter, BytesWritten) { MemoryWriter memory_writer(memory_buffer); EXPECT_EQ(memory_writer.bytes_written(), 0u); Status status = memory_writer.Write(&kExpectedStruct, sizeof(kExpectedStruct)); EXPECT_EQ(status, OkStatus()); EXPECT_EQ(memory_writer.bytes_written(), sizeof(kExpectedStruct)); } // namespace TEST(MemoryWriter, ValidateContents) { MemoryWriter memory_writer(memory_buffer); EXPECT_TRUE( memory_writer.Write(&kExpectedStruct, sizeof(kExpectedStruct)).ok()); std::span written_data = memory_writer.WrittenData(); EXPECT_EQ(written_data.size_bytes(), sizeof(kExpectedStruct)); TestStruct temp; std::memcpy(&temp, written_data.data(), written_data.size_bytes()); EXPECT_EQ(memcmp(&temp, &kExpectedStruct, sizeof(kExpectedStruct)), 0); } TEST(MemoryWriter, MultipleWrites) { constexpr size_t kTempBufferSize = 72; std::byte buffer[kTempBufferSize] = {}; for (std::byte& value : memory_buffer) { value = std::byte(0); } MemoryWriter memory_writer(memory_buffer); size_t counter = 0; while (memory_writer.ConservativeWriteLimit() >= kTempBufferSize) { for (size_t i = 0; i < sizeof(buffer); ++i) { buffer[i] = std::byte(counter++); } EXPECT_EQ(memory_writer.Write(std::span(buffer)), OkStatus()); } EXPECT_GT(memory_writer.ConservativeWriteLimit(), 0u); EXPECT_LT(memory_writer.ConservativeWriteLimit(), kTempBufferSize); EXPECT_EQ(memory_writer.Write(std::span(buffer)), Status::ResourceExhausted()); EXPECT_EQ(memory_writer.bytes_written(), counter); counter = 0; for (const std::byte& value : memory_writer.WrittenData()) { EXPECT_EQ(value, std::byte(counter++)); } } TEST(MemoryWriter, FullWriter) { constexpr size_t kTempBufferSize = 32; std::byte buffer[kTempBufferSize] = {}; const int fill_byte = 0x25; memset(buffer, fill_byte, sizeof(buffer)); for (std::byte& value : memory_buffer) { value = std::byte(0); } MemoryWriter memory_writer(memory_buffer); while (memory_writer.ConservativeWriteLimit() > 0) { size_t bytes_to_write = std::min(sizeof(buffer), memory_writer.ConservativeWriteLimit()); EXPECT_EQ(memory_writer.Write(std::span(buffer, bytes_to_write)), OkStatus()); } EXPECT_EQ(memory_writer.ConservativeWriteLimit(), 0u); EXPECT_EQ(memory_writer.Write(std::span(buffer)), Status::OutOfRange()); EXPECT_EQ(memory_writer.bytes_written(), memory_buffer.size()); for (const std::byte& value : memory_writer.WrittenData()) { EXPECT_EQ(value, std::byte(fill_byte)); } } TEST(MemoryWriter, EmptyData) { std::byte buffer[5] = {}; MemoryWriter memory_writer(memory_buffer); EXPECT_EQ(memory_writer.Write(buffer, 0), OkStatus()); EXPECT_EQ(memory_writer.bytes_written(), 0u); } TEST(MemoryWriter, ValidateContents_SingleByteWrites) { MemoryWriter memory_writer(memory_buffer); EXPECT_TRUE(memory_writer.Write(std::byte{0x01}).ok()); EXPECT_EQ(memory_writer.bytes_written(), 1u); EXPECT_EQ(memory_writer.data()[0], std::byte{0x01}); EXPECT_TRUE(memory_writer.Write(std::byte{0x7E}).ok()); EXPECT_EQ(memory_writer.bytes_written(), 2u); EXPECT_EQ(memory_writer.data()[1], std::byte{0x7E}); } #define TESTING_CHECK_FAILURES_IS_SUPPORTED 0 #if TESTING_CHECK_FAILURES_IS_SUPPORTED // TODO(amontanez): Ensure that this test triggers an assert. TEST(MemoryWriter, NullPointer) { MemoryWriter memory_writer(memory_buffer); memory_writer.Write(nullptr, 21); } // TODO(davidrogers): Ensure that this test triggers an assert. TEST(MemoryReader, NullSpan) { ByteSpan dest(nullptr, 5); MemoryReader memory_reader(memory_buffer); memory_reader.Read(dest); } // TODO(davidrogers): Ensure that this test triggers an assert. TEST(MemoryReader, NullPointer) { MemoryReader memory_reader(memory_buffer); memory_reader.Read(nullptr, 21); } #endif // TESTING_CHECK_FAILURES_IS_SUPPORTED TEST(MemoryReader, SingleFullRead) { constexpr size_t kTempBufferSize = 32; std::array source; std::array dest; uint8_t counter = 0; for (std::byte& value : source) { value = std::byte(counter++); } MemoryReader memory_reader(source); // Read exactly the available bytes. EXPECT_EQ(memory_reader.ConservativeReadLimit(), dest.size()); Result result = memory_reader.Read(dest); EXPECT_EQ(result.status(), OkStatus()); EXPECT_EQ(result.value().size_bytes(), dest.size()); ASSERT_EQ(source.size(), result.value().size_bytes()); for (size_t i = 0; i < source.size(); i++) { EXPECT_EQ(source[i], result.value()[i]); } // Shoud be no byte remaining. EXPECT_EQ(memory_reader.ConservativeReadLimit(), 0u); result = memory_reader.Read(dest); EXPECT_EQ(result.status(), Status::OutOfRange()); } TEST(MemoryReader, EmptySpanRead) { constexpr size_t kTempBufferSize = 32; std::array source; // Use a span with nullptr and zero length; ByteSpan dest(nullptr, 0); EXPECT_EQ(dest.size_bytes(), 0u); MemoryReader memory_reader(source); // Read exactly the available bytes. Result result = memory_reader.Read(dest); EXPECT_EQ(result.status(), OkStatus()); EXPECT_EQ(result.value().size_bytes(), 0u); EXPECT_EQ(result.value().data(), dest.data()); // Shoud be original bytes remaining. EXPECT_EQ(memory_reader.ConservativeReadLimit(), source.size()); } TEST(MemoryReader, SinglePartialRead) { constexpr size_t kTempBufferSize = 32; std::array source; std::array dest; uint8_t counter = 0; for (std::byte& value : source) { value = std::byte(counter++); } MemoryReader memory_reader(source); // Try and read double the bytes available. Use the pointer/size version of // the API. Result result = memory_reader.Read(dest.data(), dest.size()); EXPECT_EQ(result.status(), OkStatus()); EXPECT_EQ(result.value().size_bytes(), source.size()); ASSERT_EQ(source.size(), result.value().size_bytes()); for (size_t i = 0; i < source.size(); i++) { EXPECT_EQ(source[i], result.value()[i]); } // Shoud be no byte remaining. EXPECT_EQ(memory_reader.ConservativeReadLimit(), 0u); result = memory_reader.Read(dest); EXPECT_EQ(result.status(), Status::OutOfRange()); } TEST(MemoryReader, MultipleReads) { constexpr size_t kTempBufferSize = 32; std::array source; std::array dest; uint8_t counter = 0; for (std::byte& value : source) { value = std::byte(counter++); } MemoryReader memory_reader(source); size_t source_chunk_base = 0; while (memory_reader.ConservativeReadLimit() > 0) { size_t read_limit = memory_reader.ConservativeReadLimit(); // Try and read a chunk of bytes. Result result = memory_reader.Read(dest); EXPECT_EQ(result.status(), OkStatus()); EXPECT_EQ(result.value().size_bytes(), dest.size()); EXPECT_EQ(memory_reader.ConservativeReadLimit(), read_limit - result.value().size_bytes()); // Verify the chunk of byte that was read. for (size_t i = 0; i < result.value().size_bytes(); i++) { EXPECT_EQ(source[source_chunk_base + i], result.value()[i]); } source_chunk_base += result.value().size_bytes(); } } } // namespace } // namespace pw::stream