/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "util/Util.h" #include #include #include #include #include "android-base/stringprintf.h" #include "androidfw/StringPiece.h" #include "build/version.h" #include "text/Unicode.h" #include "text/Utf8Iterator.h" #include "util/BigBuffer.h" #include "util/Maybe.h" #include "utils/Unicode.h" using ::aapt::text::Utf8Iterator; using ::android::StringPiece; using ::android::StringPiece16; namespace aapt { namespace util { // Package name and shared user id would be used as a part of the file name. // Limits size to 223 and reserves 32 for the OS. // See frameworks/base/core/java/android/content/pm/parsing/ParsingPackageUtils.java constexpr static const size_t kMaxPackageNameSize = 223; static std::vector SplitAndTransform( const StringPiece& str, char sep, const std::function& f) { std::vector parts; const StringPiece::const_iterator end = std::end(str); StringPiece::const_iterator start = std::begin(str); StringPiece::const_iterator current; do { current = std::find(start, end, sep); parts.emplace_back(str.substr(start, current).to_string()); if (f) { std::string& part = parts.back(); std::transform(part.begin(), part.end(), part.begin(), f); } start = current + 1; } while (current != end); return parts; } std::vector Split(const StringPiece& str, char sep) { return SplitAndTransform(str, sep, nullptr); } std::vector SplitAndLowercase(const StringPiece& str, char sep) { return SplitAndTransform(str, sep, ::tolower); } bool StartsWith(const StringPiece& str, const StringPiece& prefix) { if (str.size() < prefix.size()) { return false; } return str.substr(0, prefix.size()) == prefix; } bool EndsWith(const StringPiece& str, const StringPiece& suffix) { if (str.size() < suffix.size()) { return false; } return str.substr(str.size() - suffix.size(), suffix.size()) == suffix; } StringPiece TrimLeadingWhitespace(const StringPiece& str) { if (str.size() == 0 || str.data() == nullptr) { return str; } const char* start = str.data(); const char* end = start + str.length(); while (start != end && isspace(*start)) { start++; } return StringPiece(start, end - start); } StringPiece TrimTrailingWhitespace(const StringPiece& str) { if (str.size() == 0 || str.data() == nullptr) { return str; } const char* start = str.data(); const char* end = start + str.length(); while (end != start && isspace(*(end - 1))) { end--; } return StringPiece(start, end - start); } StringPiece TrimWhitespace(const StringPiece& str) { if (str.size() == 0 || str.data() == nullptr) { return str; } const char* start = str.data(); const char* end = str.data() + str.length(); while (start != end && isspace(*start)) { start++; } while (end != start && isspace(*(end - 1))) { end--; } return StringPiece(start, end - start); } static int IsJavaNameImpl(const StringPiece& str) { int pieces = 0; for (const StringPiece& piece : Tokenize(str, '.')) { pieces++; if (!text::IsJavaIdentifier(piece)) { return -1; } } return pieces; } bool IsJavaClassName(const StringPiece& str) { return IsJavaNameImpl(str) >= 2; } bool IsJavaPackageName(const StringPiece& str) { return IsJavaNameImpl(str) >= 1; } static int IsAndroidNameImpl(const StringPiece& str) { int pieces = 0; for (const StringPiece& piece : Tokenize(str, '.')) { if (piece.empty()) { return -1; } const char first_character = piece.data()[0]; if (!::isalpha(first_character)) { return -1; } bool valid = std::all_of(piece.begin() + 1, piece.end(), [](const char c) -> bool { return ::isalnum(c) || c == '_'; }); if (!valid) { return -1; } pieces++; } return pieces; } bool IsAndroidPackageName(const StringPiece& str) { if (str.size() > kMaxPackageNameSize) { return false; } return IsAndroidNameImpl(str) > 1 || str == "android"; } bool IsAndroidSharedUserId(const android::StringPiece& package_name, const android::StringPiece& shared_user_id) { if (shared_user_id.size() > kMaxPackageNameSize) { return false; } return shared_user_id.empty() || IsAndroidNameImpl(shared_user_id) > 1 || package_name == "android"; } bool IsAndroidSplitName(const StringPiece& str) { return IsAndroidNameImpl(str) > 0; } Maybe GetFullyQualifiedClassName(const StringPiece& package, const StringPiece& classname) { if (classname.empty()) { return {}; } if (util::IsJavaClassName(classname)) { return classname.to_string(); } if (package.empty()) { return {}; } std::string result = package.to_string(); if (classname.data()[0] != '.') { result += '.'; } result.append(classname.data(), classname.size()); if (!IsJavaClassName(result)) { return {}; } return result; } const char* GetToolName() { static const char* const sToolName = "Android Asset Packaging Tool (aapt)"; return sToolName; } std::string GetToolFingerprint() { // DO NOT UPDATE, this is more of a marketing version. static const char* const sMajorVersion = "2"; // Update minor version whenever a feature or flag is added. static const char* const sMinorVersion = "19"; // The build id of aapt2 binary. static const std::string sBuildId = android::build::GetBuildNumber(); return android::base::StringPrintf("%s.%s-%s", sMajorVersion, sMinorVersion, sBuildId.c_str()); } static size_t ConsumeDigits(const char* start, const char* end) { const char* c = start; for (; c != end && *c >= '0' && *c <= '9'; c++) { } return static_cast(c - start); } bool VerifyJavaStringFormat(const StringPiece& str) { const char* c = str.begin(); const char* const end = str.end(); size_t arg_count = 0; bool nonpositional = false; while (c != end) { if (*c == '%' && c + 1 < end) { c++; if (*c == '%' || *c == 'n') { c++; continue; } arg_count++; size_t num_digits = ConsumeDigits(c, end); if (num_digits > 0) { c += num_digits; if (c != end && *c != '$') { // The digits were a size, but not a positional argument. nonpositional = true; } } else if (*c == '<') { // Reusing last argument, bad idea since positions can be moved around // during translation. nonpositional = true; c++; // Optionally we can have a $ after if (c != end && *c == '$') { c++; } } else { nonpositional = true; } // Ignore size, width, flags, etc. while (c != end && (*c == '-' || *c == '#' || *c == '+' || *c == ' ' || *c == ',' || *c == '(' || (*c >= '0' && *c <= '9'))) { c++; } /* * This is a shortcut to detect strings that are going to Time.format() * instead of String.format() * * Comparison of String.format() and Time.format() args: * * String: ABC E GH ST X abcdefgh nost x * Time: DEFGHKMS W Za d hkm s w yz * * Therefore we know it's definitely Time if we have: * DFKMWZkmwyz */ if (c != end) { switch (*c) { case 'D': case 'F': case 'K': case 'M': case 'W': case 'Z': case 'k': case 'm': case 'w': case 'y': case 'z': return true; } } } if (c != end) { c++; } } if (arg_count > 1 && nonpositional) { // Multiple arguments were specified, but some or all were non positional. // Translated // strings may rearrange the order of the arguments, which will break the // string. return false; } return true; } std::string Utf8ToModifiedUtf8(const std::string& utf8) { // Java uses Modified UTF-8 which only supports the 1, 2, and 3 byte formats of UTF-8. To encode // 4 byte UTF-8 codepoints, Modified UTF-8 allows the use of surrogate pairs in the same format // of CESU-8 surrogate pairs. Calculate the size of the utf8 string with all 4 byte UTF-8 // codepoints replaced with 2 3 byte surrogate pairs size_t modified_size = 0; const size_t size = utf8.size(); for (size_t i = 0; i < size; i++) { if (((uint8_t) utf8[i] >> 4) == 0xF) { modified_size += 6; i += 3; } else { modified_size++; } } // Early out if no 4 byte codepoints are found if (size == modified_size) { return utf8; } std::string output; output.reserve(modified_size); for (size_t i = 0; i < size; i++) { if (((uint8_t) utf8[i] >> 4) == 0xF) { int32_t codepoint = utf32_from_utf8_at(utf8.data(), size, i, nullptr); // Calculate the high and low surrogates as UTF-16 would int32_t high = ((codepoint - 0x10000) / 0x400) + 0xD800; int32_t low = ((codepoint - 0x10000) % 0x400) + 0xDC00; // Encode each surrogate in UTF-8 output.push_back((char) (0xE4 | ((high >> 12) & 0xF))); output.push_back((char) (0x80 | ((high >> 6) & 0x3F))); output.push_back((char) (0x80 | (high & 0x3F))); output.push_back((char) (0xE4 | ((low >> 12) & 0xF))); output.push_back((char) (0x80 | ((low >> 6) & 0x3F))); output.push_back((char) (0x80 | (low & 0x3F))); i += 3; } else { output.push_back(utf8[i]); } } return output; } std::string ModifiedUtf8ToUtf8(const std::string& modified_utf8) { // The UTF-8 representation will have a byte length less than or equal to the Modified UTF-8 // representation. std::string output; output.reserve(modified_utf8.size()); size_t index = 0; const size_t modified_size = modified_utf8.size(); while (index < modified_size) { size_t next_index; int32_t high_surrogate = utf32_from_utf8_at(modified_utf8.data(), modified_size, index, &next_index); if (high_surrogate < 0) { return {}; } // Check that the first codepoint is within the high surrogate range if (high_surrogate >= 0xD800 && high_surrogate <= 0xDB7F) { int32_t low_surrogate = utf32_from_utf8_at(modified_utf8.data(), modified_size, next_index, &next_index); if (low_surrogate < 0) { return {}; } // Check that the second codepoint is within the low surrogate range if (low_surrogate >= 0xDC00 && low_surrogate <= 0xDFFF) { const char32_t codepoint = (char32_t) (((high_surrogate - 0xD800) * 0x400) + (low_surrogate - 0xDC00) + 0x10000); // The decoded codepoint should represent a 4 byte, UTF-8 character const size_t utf8_length = (size_t) utf32_to_utf8_length(&codepoint, 1); if (utf8_length != 4) { return {}; } // Encode the UTF-8 representation of the codepoint into the string char* start = &output[output.size()]; output.resize(output.size() + utf8_length); utf32_to_utf8((char32_t*) &codepoint, 1, start, utf8_length + 1); index = next_index; continue; } } // Append non-surrogate pairs to the output string for (size_t i = index; i < next_index; i++) { output.push_back(modified_utf8[i]); } index = next_index; } return output; } std::u16string Utf8ToUtf16(const StringPiece& utf8) { ssize_t utf16_length = utf8_to_utf16_length( reinterpret_cast(utf8.data()), utf8.length()); if (utf16_length <= 0) { return {}; } std::u16string utf16; utf16.resize(utf16_length); utf8_to_utf16(reinterpret_cast(utf8.data()), utf8.length(), &*utf16.begin(), utf16_length + 1); return utf16; } std::string Utf16ToUtf8(const StringPiece16& utf16) { ssize_t utf8_length = utf16_to_utf8_length(utf16.data(), utf16.length()); if (utf8_length <= 0) { return {}; } std::string utf8; utf8.resize(utf8_length); utf16_to_utf8(utf16.data(), utf16.length(), &*utf8.begin(), utf8_length + 1); return utf8; } bool WriteAll(std::ostream& out, const BigBuffer& buffer) { for (const auto& b : buffer) { if (!out.write(reinterpret_cast(b.buffer.get()), b.size)) { return false; } } return true; } std::unique_ptr Copy(const BigBuffer& buffer) { std::unique_ptr data = std::unique_ptr(new uint8_t[buffer.size()]); uint8_t* p = data.get(); for (const auto& block : buffer) { memcpy(p, block.buffer.get(), block.size); p += block.size; } return data; } typename Tokenizer::iterator& Tokenizer::iterator::operator++() { const char* start = token_.end(); const char* end = str_.end(); if (start == end) { end_ = true; token_.assign(token_.end(), 0); return *this; } start += 1; const char* current = start; while (current != end) { if (*current == separator_) { token_.assign(start, current - start); return *this; } ++current; } token_.assign(start, end - start); return *this; } bool Tokenizer::iterator::operator==(const iterator& rhs) const { // We check equality here a bit differently. // We need to know that the addresses are the same. return token_.begin() == rhs.token_.begin() && token_.end() == rhs.token_.end() && end_ == rhs.end_; } bool Tokenizer::iterator::operator!=(const iterator& rhs) const { return !(*this == rhs); } Tokenizer::iterator::iterator(const StringPiece& s, char sep, const StringPiece& tok, bool end) : str_(s), separator_(sep), token_(tok), end_(end) {} Tokenizer::Tokenizer(const StringPiece& str, char sep) : begin_(++iterator(str, sep, StringPiece(str.begin() - 1, 0), false)), end_(str, sep, StringPiece(str.end(), 0), true) {} bool ExtractResFilePathParts(const StringPiece& path, StringPiece* out_prefix, StringPiece* out_entry, StringPiece* out_suffix) { const StringPiece res_prefix("res/"); if (!StartsWith(path, res_prefix)) { return false; } StringPiece::const_iterator last_occurence = path.end(); for (auto iter = path.begin() + res_prefix.size(); iter != path.end(); ++iter) { if (*iter == '/') { last_occurence = iter; } } if (last_occurence == path.end()) { return false; } auto iter = std::find(last_occurence, path.end(), '.'); *out_suffix = StringPiece(iter, path.end() - iter); *out_entry = StringPiece(last_occurence + 1, iter - last_occurence - 1); *out_prefix = StringPiece(path.begin(), last_occurence - path.begin() + 1); return true; } StringPiece16 GetString16(const android::ResStringPool& pool, size_t idx) { if (auto str = pool.stringAt(idx); str.ok()) { return *str; } return StringPiece16(); } std::string GetString(const android::ResStringPool& pool, size_t idx) { if (auto str = pool.string8At(idx); str.ok()) { return ModifiedUtf8ToUtf8(str->to_string()); } return Utf16ToUtf8(GetString16(pool, idx)); } } // namespace util } // namespace aapt