/* * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #undef LOG_TAG #define LOG_TAG "RenderEngine" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "SkiaGLRenderEngine.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../gl/GLExtensions.h" #include "Cache.h" #include "ColorSpaces.h" #include "SkBlendMode.h" #include "SkImageInfo.h" #include "filters/BlurFilter.h" #include "filters/LinearEffect.h" #include "log/log_main.h" #include "skia/debug/SkiaCapture.h" #include "skia/debug/SkiaMemoryReporter.h" #include "skia/filters/StretchShaderFactory.h" #include "system/graphics-base-v1.0.h" namespace { // Debugging settings static const bool kPrintLayerSettings = false; static const bool kFlushAfterEveryLayer = false; } // namespace bool checkGlError(const char* op, int lineNumber); namespace android { namespace renderengine { namespace skia { using base::StringAppendF; static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute, EGLint wanted, EGLConfig* outConfig) { EGLint numConfigs = -1, n = 0; eglGetConfigs(dpy, nullptr, 0, &numConfigs); std::vector configs(numConfigs, EGL_NO_CONFIG_KHR); eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n); configs.resize(n); if (!configs.empty()) { if (attribute != EGL_NONE) { for (EGLConfig config : configs) { EGLint value = 0; eglGetConfigAttrib(dpy, config, attribute, &value); if (wanted == value) { *outConfig = config; return NO_ERROR; } } } else { // just pick the first one *outConfig = configs[0]; return NO_ERROR; } } return NAME_NOT_FOUND; } static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType, EGLConfig* config) { // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if // it is to be used with WIFI displays status_t err; EGLint wantedAttribute; EGLint wantedAttributeValue; std::vector attribs; if (renderableType) { const ui::PixelFormat pixelFormat = static_cast(format); const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102; // Default to 8 bits per channel. const EGLint tmpAttribs[] = { EGL_RENDERABLE_TYPE, renderableType, EGL_RECORDABLE_ANDROID, EGL_TRUE, EGL_SURFACE_TYPE, EGL_WINDOW_BIT | EGL_PBUFFER_BIT, EGL_FRAMEBUFFER_TARGET_ANDROID, EGL_TRUE, EGL_RED_SIZE, is1010102 ? 10 : 8, EGL_GREEN_SIZE, is1010102 ? 10 : 8, EGL_BLUE_SIZE, is1010102 ? 10 : 8, EGL_ALPHA_SIZE, is1010102 ? 2 : 8, EGL_NONE, }; std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)), std::back_inserter(attribs)); wantedAttribute = EGL_NONE; wantedAttributeValue = EGL_NONE; } else { // if no renderable type specified, fallback to a simplified query wantedAttribute = EGL_NATIVE_VISUAL_ID; wantedAttributeValue = format; } err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue, config); if (err == NO_ERROR) { EGLint caveat; if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat)) ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); } return err; } std::unique_ptr SkiaGLRenderEngine::create( const RenderEngineCreationArgs& args) { // initialize EGL for the default display EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (!eglInitialize(display, nullptr, nullptr)) { LOG_ALWAYS_FATAL("failed to initialize EGL"); } const auto eglVersion = eglQueryString(display, EGL_VERSION); if (!eglVersion) { checkGlError(__FUNCTION__, __LINE__); LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed"); } const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS); if (!eglExtensions) { checkGlError(__FUNCTION__, __LINE__); LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed"); } auto& extensions = gl::GLExtensions::getInstance(); extensions.initWithEGLStrings(eglVersion, eglExtensions); // The code assumes that ES2 or later is available if this extension is // supported. EGLConfig config = EGL_NO_CONFIG_KHR; if (!extensions.hasNoConfigContext()) { config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true); } EGLContext protectedContext = EGL_NO_CONTEXT; const std::optional priority = createContextPriority(args); if (args.enableProtectedContext && extensions.hasProtectedContent()) { protectedContext = createEglContext(display, config, nullptr, priority, Protection::PROTECTED); ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context"); } EGLContext ctxt = createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED); // if can't create a GL context, we can only abort. LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed"); EGLSurface placeholder = EGL_NO_SURFACE; if (!extensions.hasSurfacelessContext()) { placeholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat, Protection::UNPROTECTED); LOG_ALWAYS_FATAL_IF(placeholder == EGL_NO_SURFACE, "can't create placeholder pbuffer"); } EGLBoolean success = eglMakeCurrent(display, placeholder, placeholder, ctxt); LOG_ALWAYS_FATAL_IF(!success, "can't make placeholder pbuffer current"); extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER), glGetString(GL_VERSION), glGetString(GL_EXTENSIONS)); EGLSurface protectedPlaceholder = EGL_NO_SURFACE; if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) { protectedPlaceholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat, Protection::PROTECTED); ALOGE_IF(protectedPlaceholder == EGL_NO_SURFACE, "can't create protected placeholder pbuffer"); } // initialize the renderer while GL is current std::unique_ptr engine = std::make_unique(args, display, ctxt, placeholder, protectedContext, protectedPlaceholder); ALOGI("OpenGL ES informations:"); ALOGI("vendor : %s", extensions.getVendor()); ALOGI("renderer : %s", extensions.getRenderer()); ALOGI("version : %s", extensions.getVersion()); ALOGI("extensions: %s", extensions.getExtensions()); ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize()); ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims()); return engine; } std::future SkiaGLRenderEngine::primeCache() { Cache::primeShaderCache(this); return {}; } EGLConfig SkiaGLRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) { status_t err; EGLConfig config; // First try to get an ES3 config err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config); if (err != NO_ERROR) { // If ES3 fails, try to get an ES2 config err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config); if (err != NO_ERROR) { // If ES2 still doesn't work, probably because we're on the emulator. // try a simplified query ALOGW("no suitable EGLConfig found, trying a simpler query"); err = selectEGLConfig(display, format, 0, &config); if (err != NO_ERROR) { // this EGL is too lame for android LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); } } } if (logConfig) { // print some debugging info EGLint r, g, b, a; eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r); eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g); eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b); eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a); ALOGI("EGL information:"); ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR)); ALOGI("version : %s", eglQueryString(display, EGL_VERSION)); ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS)); ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported"); ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config); } return config; } sk_sp SkiaGLRenderEngine::SkSLCacheMonitor::load(const SkData& key) { // This "cache" does not actually cache anything. It just allows us to // monitor Skia's internal cache. So this method always returns null. return nullptr; } void SkiaGLRenderEngine::SkSLCacheMonitor::store(const SkData& key, const SkData& data, const SkString& description) { mShadersCachedSinceLastCall++; } void SkiaGLRenderEngine::assertShadersCompiled(int numShaders) { const int cached = mSkSLCacheMonitor.shadersCachedSinceLastCall(); LOG_ALWAYS_FATAL_IF(cached != numShaders, "Attempted to cache %i shaders; cached %i", numShaders, cached); } // HUANGLONG begin // open or close keystone switch, and reset keystone matrix void SkiaGLRenderEngine::setKeystoneMode(const uint32_t flags, const std::vector matrix) { mCanKeystone = (flags & eEnableKeystone) || (flags & eEnableKeystoneAndReverse); if (matrix.empty() || matrix.size() < legalMatrixSize) { ALOGE("%s: matrix size is %d, illegal, close keystone", __func__, static_cast(matrix.size())); mCanKeystone = false; return; } ALOGI("setKeystoneMode, keystone is \n(%f, %f, %f)\n(%f, %f, %f)\n(%f, %f, %f)", matrix[0], matrix[4], matrix[12], matrix[1], matrix[5], matrix[13], matrix[3], matrix[7], matrix[15]); SkMatrix currentMatrix = SkMatrix::MakeAll(matrix[0], matrix[4], matrix[12], matrix[1], matrix[5], matrix[13], matrix[3], matrix[7], 1); if (flags & eEnableKeystoneAndReverse) { keystoneMatrix = SkMatrix(); // Compute an inverted matrix bool success = currentMatrix.invert(&keystoneMatrix); if (!success) { ALOGE("get invert failed!"); } } else { keystoneMatrix = currentMatrix; } } // HUANGLONG end int SkiaGLRenderEngine::reportShadersCompiled() { return mSkSLCacheMonitor.shadersCachedSinceLastCall(); } SkiaGLRenderEngine::SkiaGLRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display, EGLContext ctxt, EGLSurface placeholder, EGLContext protectedContext, EGLSurface protectedPlaceholder) : SkiaRenderEngine(args.renderEngineType), mEGLDisplay(display), mEGLContext(ctxt), mPlaceholderSurface(placeholder), mProtectedEGLContext(protectedContext), mProtectedPlaceholderSurface(protectedPlaceholder), mDefaultPixelFormat(static_cast(args.pixelFormat)), mUseColorManagement(args.useColorManagement) { sk_sp glInterface(GrGLCreateNativeInterface()); LOG_ALWAYS_FATAL_IF(!glInterface.get()); GrContextOptions options; options.fDisableDriverCorrectnessWorkarounds = true; options.fDisableDistanceFieldPaths = true; options.fReducedShaderVariations = true; options.fPersistentCache = &mSkSLCacheMonitor; mGrContext = GrDirectContext::MakeGL(glInterface, options); if (supportsProtectedContent()) { useProtectedContext(true); mProtectedGrContext = GrDirectContext::MakeGL(glInterface, options); useProtectedContext(false); } if (args.supportsBackgroundBlur) { ALOGD("Background Blurs Enabled"); mBlurFilter = new BlurFilter(); } mCapture = std::make_unique(); } SkiaGLRenderEngine::~SkiaGLRenderEngine() { std::lock_guard lock(mRenderingMutex); if (mBlurFilter) { delete mBlurFilter; } mCapture = nullptr; mGrContext->flushAndSubmit(true); mGrContext->abandonContext(); if (mProtectedGrContext) { mProtectedGrContext->flushAndSubmit(true); mProtectedGrContext->abandonContext(); } if (mPlaceholderSurface != EGL_NO_SURFACE) { eglDestroySurface(mEGLDisplay, mPlaceholderSurface); } if (mProtectedPlaceholderSurface != EGL_NO_SURFACE) { eglDestroySurface(mEGLDisplay, mProtectedPlaceholderSurface); } if (mEGLContext != EGL_NO_CONTEXT) { eglDestroyContext(mEGLDisplay, mEGLContext); } if (mProtectedEGLContext != EGL_NO_CONTEXT) { eglDestroyContext(mEGLDisplay, mProtectedEGLContext); } eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); eglTerminate(mEGLDisplay); eglReleaseThread(); } bool SkiaGLRenderEngine::supportsProtectedContent() const { return mProtectedEGLContext != EGL_NO_CONTEXT; } GrDirectContext* SkiaGLRenderEngine::getActiveGrContext() const { return mInProtectedContext ? mProtectedGrContext.get() : mGrContext.get(); } void SkiaGLRenderEngine::useProtectedContext(bool useProtectedContext) { if (useProtectedContext == mInProtectedContext || (useProtectedContext && !supportsProtectedContent())) { return; } // release any scratch resources before switching into a new mode if (getActiveGrContext()) { getActiveGrContext()->purgeUnlockedResources(true); } const EGLSurface surface = useProtectedContext ? mProtectedPlaceholderSurface : mPlaceholderSurface; const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext; if (eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE) { mInProtectedContext = useProtectedContext; // given that we are sharing the same thread between two GrContexts we need to // make sure that the thread state is reset when switching between the two. if (getActiveGrContext()) { getActiveGrContext()->resetContext(); } } } base::unique_fd SkiaGLRenderEngine::flush() { ATRACE_CALL(); if (!gl::GLExtensions::getInstance().hasNativeFenceSync()) { return base::unique_fd(); } EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); if (sync == EGL_NO_SYNC_KHR) { ALOGW("failed to create EGL native fence sync: %#x", eglGetError()); return base::unique_fd(); } // native fence fd will not be populated until flush() is done. glFlush(); // get the fence fd base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync)); eglDestroySyncKHR(mEGLDisplay, sync); if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { ALOGW("failed to dup EGL native fence sync: %#x", eglGetError()); } return fenceFd; } bool SkiaGLRenderEngine::waitFence(base::unique_fd fenceFd) { if (!gl::GLExtensions::getInstance().hasNativeFenceSync() || !gl::GLExtensions::getInstance().hasWaitSync()) { return false; } // release the fd and transfer the ownership to EGLSync EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE}; EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); if (sync == EGL_NO_SYNC_KHR) { ALOGE("failed to create EGL native fence sync: %#x", eglGetError()); return false; } // XXX: The spec draft is inconsistent as to whether this should return an // EGLint or void. Ignore the return value for now, as it's not strictly // needed. eglWaitSyncKHR(mEGLDisplay, sync, 0); EGLint error = eglGetError(); eglDestroySyncKHR(mEGLDisplay, sync); if (error != EGL_SUCCESS) { ALOGE("failed to wait for EGL native fence sync: %#x", error); return false; } return true; } static float toDegrees(uint32_t transform) { switch (transform) { case ui::Transform::ROT_90: return 90.0; case ui::Transform::ROT_180: return 180.0; case ui::Transform::ROT_270: return 270.0; default: return 0.0; } } static SkColorMatrix toSkColorMatrix(const mat4& matrix) { return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3], 0); } static bool needsToneMapping(ui::Dataspace sourceDataspace, ui::Dataspace destinationDataspace) { int64_t sourceTransfer = sourceDataspace & HAL_DATASPACE_TRANSFER_MASK; int64_t destTransfer = destinationDataspace & HAL_DATASPACE_TRANSFER_MASK; // Treat unsupported dataspaces as srgb if (destTransfer != HAL_DATASPACE_TRANSFER_LINEAR && destTransfer != HAL_DATASPACE_TRANSFER_HLG && destTransfer != HAL_DATASPACE_TRANSFER_ST2084) { destTransfer = HAL_DATASPACE_TRANSFER_SRGB; } if (sourceTransfer != HAL_DATASPACE_TRANSFER_LINEAR && sourceTransfer != HAL_DATASPACE_TRANSFER_HLG && sourceTransfer != HAL_DATASPACE_TRANSFER_ST2084) { sourceTransfer = HAL_DATASPACE_TRANSFER_SRGB; } const bool isSourceLinear = sourceTransfer == HAL_DATASPACE_TRANSFER_LINEAR; const bool isSourceSRGB = sourceTransfer == HAL_DATASPACE_TRANSFER_SRGB; const bool isDestLinear = destTransfer == HAL_DATASPACE_TRANSFER_LINEAR; const bool isDestSRGB = destTransfer == HAL_DATASPACE_TRANSFER_SRGB; return !(isSourceLinear && isDestSRGB) && !(isSourceSRGB && isDestLinear) && sourceTransfer != destTransfer; } void SkiaGLRenderEngine::mapExternalTextureBuffer(const sp& buffer, bool isRenderable) { // Only run this if RE is running on its own thread. This way the access to GL // operations is guaranteed to be happening on the same thread. if (mRenderEngineType != RenderEngineType::SKIA_GL_THREADED) { return; } // We currently don't attempt to map a buffer if the buffer contains protected content // because GPU resources for protected buffers is much more limited. const bool isProtectedBuffer = buffer->getUsage() & GRALLOC_USAGE_PROTECTED; if (isProtectedBuffer) { return; } ATRACE_CALL(); // If we were to support caching protected buffers then we will need to switch the // currently bound context if we are not already using the protected context (and subsequently // switch back after the buffer is cached). However, for non-protected content we can bind // the texture in either GL context because they are initialized with the same share_context // which allows the texture state to be shared between them. auto grContext = getActiveGrContext(); auto& cache = mTextureCache; std::lock_guard lock(mRenderingMutex); mGraphicBufferExternalRefs[buffer->getId()]++; if (const auto& iter = cache.find(buffer->getId()); iter == cache.end()) { std::shared_ptr imageTextureRef = std::make_shared(grContext, buffer->toAHardwareBuffer(), isRenderable, mTextureCleanupMgr); cache.insert({buffer->getId(), imageTextureRef}); } } void SkiaGLRenderEngine::unmapExternalTextureBuffer(const sp& buffer) { ATRACE_CALL(); std::lock_guard lock(mRenderingMutex); if (const auto& iter = mGraphicBufferExternalRefs.find(buffer->getId()); iter != mGraphicBufferExternalRefs.end()) { if (iter->second == 0) { ALOGW("Attempted to unmap GraphicBuffer from RenderEngine texture, but the " "ref count was already zero!", buffer->getId()); mGraphicBufferExternalRefs.erase(buffer->getId()); return; } iter->second--; // Swap contexts if needed prior to deleting this buffer // See Issue 1 of // https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt: even // when a protected context and an unprotected context are part of the same share group, // protected surfaces may not be accessed by an unprotected context, implying that protected // surfaces may only be freed when a protected context is active. const bool inProtected = mInProtectedContext; useProtectedContext(buffer->getUsage() & GRALLOC_USAGE_PROTECTED); if (iter->second == 0) { mTextureCache.erase(buffer->getId()); mGraphicBufferExternalRefs.erase(buffer->getId()); } // Swap back to the previous context so that cached values of isProtected in SurfaceFlinger // are up-to-date. if (inProtected != mInProtectedContext) { useProtectedContext(inProtected); } } } bool SkiaGLRenderEngine::canSkipPostRenderCleanup() const { std::lock_guard lock(mRenderingMutex); return mTextureCleanupMgr.isEmpty(); } void SkiaGLRenderEngine::cleanupPostRender() { ATRACE_CALL(); std::lock_guard lock(mRenderingMutex); mTextureCleanupMgr.cleanup(); } // Helper class intended to be used on the stack to ensure that texture cleanup // is deferred until after this class goes out of scope. class DeferTextureCleanup final { public: DeferTextureCleanup(AutoBackendTexture::CleanupManager& mgr) : mMgr(mgr) { mMgr.setDeferredStatus(true); } ~DeferTextureCleanup() { mMgr.setDeferredStatus(false); } private: DISALLOW_COPY_AND_ASSIGN(DeferTextureCleanup); AutoBackendTexture::CleanupManager& mMgr; }; sk_sp SkiaGLRenderEngine::createRuntimeEffectShader( sk_sp shader, const LayerSettings* layer, const DisplaySettings& display, bool undoPremultipliedAlpha, bool requiresLinearEffect) { const auto stretchEffect = layer->stretchEffect; // The given surface will be stretched by HWUI via matrix transformation // which gets similar results for most surfaces // Determine later on if we need to leverage the stertch shader within // surface flinger if (stretchEffect.hasEffect()) { const auto targetBuffer = layer->source.buffer.buffer; const auto graphicBuffer = targetBuffer ? targetBuffer->getBuffer() : nullptr; if (graphicBuffer && shader) { shader = mStretchShaderFactory.createSkShader(shader, stretchEffect); } } if (requiresLinearEffect) { const ui::Dataspace inputDataspace = mUseColorManagement ? layer->sourceDataspace : ui::Dataspace::V0_SRGB_LINEAR; const ui::Dataspace outputDataspace = mUseColorManagement ? display.outputDataspace : ui::Dataspace::V0_SRGB_LINEAR; LinearEffect effect = LinearEffect{.inputDataspace = inputDataspace, .outputDataspace = outputDataspace, .undoPremultipliedAlpha = undoPremultipliedAlpha}; auto effectIter = mRuntimeEffects.find(effect); sk_sp runtimeEffect = nullptr; if (effectIter == mRuntimeEffects.end()) { runtimeEffect = buildRuntimeEffect(effect); mRuntimeEffects.insert({effect, runtimeEffect}); } else { runtimeEffect = effectIter->second; } float maxLuminance = layer->source.buffer.maxLuminanceNits; // If the buffer doesn't have a max luminance, treat it as SDR & use the display's SDR // white point if (maxLuminance <= 0.f) { maxLuminance = display.sdrWhitePointNits; } return createLinearEffectShader(shader, effect, runtimeEffect, layer->colorTransform, display.maxLuminance, maxLuminance); } return shader; } void SkiaGLRenderEngine::initCanvas(SkCanvas* canvas, const DisplaySettings& display) { if (CC_UNLIKELY(mCapture->isCaptureRunning())) { // Record display settings when capture is running. std::stringstream displaySettings; PrintTo(display, &displaySettings); // Store the DisplaySettings in additional information. canvas->drawAnnotation(SkRect::MakeEmpty(), "DisplaySettings", SkData::MakeWithCString(displaySettings.str().c_str())); } // Before doing any drawing, let's make sure that we'll start at the origin of the display. // Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual // displays might have different scaling when compared to the physical screen. canvas->clipRect(getSkRect(display.physicalDisplay)); canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top); const auto clipWidth = display.clip.width(); const auto clipHeight = display.clip.height(); auto rotatedClipWidth = clipWidth; auto rotatedClipHeight = clipHeight; // Scale is contingent on the rotation result. if (display.orientation & ui::Transform::ROT_90) { std::swap(rotatedClipWidth, rotatedClipHeight); } const auto scaleX = static_cast(display.physicalDisplay.width()) / static_cast(rotatedClipWidth); const auto scaleY = static_cast(display.physicalDisplay.height()) / static_cast(rotatedClipHeight); canvas->scale(scaleX, scaleY); // Canvas rotation is done by centering the clip window at the origin, rotating, translating // back so that the top left corner of the clip is at (0, 0). canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2); canvas->rotate(toDegrees(display.orientation)); canvas->translate(-clipWidth / 2, -clipHeight / 2); canvas->translate(-display.clip.left, -display.clip.top); } class AutoSaveRestore { public: AutoSaveRestore(SkCanvas* canvas) : mCanvas(canvas) { mSaveCount = canvas->save(); } ~AutoSaveRestore() { restore(); } void replace(SkCanvas* canvas) { mCanvas = canvas; mSaveCount = canvas->save(); } void restore() { if (mCanvas) { mCanvas->restoreToCount(mSaveCount); mCanvas = nullptr; } } private: SkCanvas* mCanvas; int mSaveCount; }; static SkRRect getBlurRRect(const BlurRegion& region) { const auto rect = SkRect::MakeLTRB(region.left, region.top, region.right, region.bottom); const SkVector radii[4] = {SkVector::Make(region.cornerRadiusTL, region.cornerRadiusTL), SkVector::Make(region.cornerRadiusTR, region.cornerRadiusTR), SkVector::Make(region.cornerRadiusBR, region.cornerRadiusBR), SkVector::Make(region.cornerRadiusBL, region.cornerRadiusBL)}; SkRRect roundedRect; roundedRect.setRectRadii(rect, radii); return roundedRect; } status_t SkiaGLRenderEngine::drawLayers(const DisplaySettings& display, const std::vector& layers, const std::shared_ptr& buffer, const bool /*useFramebufferCache*/, base::unique_fd&& bufferFence, base::unique_fd* drawFence) { ATRACE_NAME("SkiaGL::drawLayers"); std::lock_guard lock(mRenderingMutex); if (layers.empty()) { ALOGV("Drawing empty layer stack"); return NO_ERROR; } if (bufferFence.get() >= 0) { // Duplicate the fence for passing to waitFence. base::unique_fd bufferFenceDup(dup(bufferFence.get())); if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) { ATRACE_NAME("Waiting before draw"); sync_wait(bufferFence.get(), -1); } } if (buffer == nullptr) { ALOGE("No output buffer provided. Aborting GPU composition."); return BAD_VALUE; } validateOutputBufferUsage(buffer->getBuffer()); auto grContext = getActiveGrContext(); auto& cache = mTextureCache; // any AutoBackendTexture deletions will now be deferred until cleanupPostRender is called DeferTextureCleanup dtc(mTextureCleanupMgr); std::shared_ptr surfaceTextureRef; if (const auto& it = cache.find(buffer->getBuffer()->getId()); it != cache.end()) { surfaceTextureRef = it->second; } else { surfaceTextureRef = std::make_shared(grContext, buffer->getBuffer() ->toAHardwareBuffer(), true, mTextureCleanupMgr); } const ui::Dataspace dstDataspace = mUseColorManagement ? display.outputDataspace : ui::Dataspace::V0_SRGB_LINEAR; sk_sp dstSurface = surfaceTextureRef->getOrCreateSurface(dstDataspace, grContext); SkCanvas* dstCanvas = mCapture->tryCapture(dstSurface.get()); if (dstCanvas == nullptr) { ALOGE("Cannot acquire canvas from Skia."); return BAD_VALUE; } // setup color filter if necessary sk_sp displayColorTransform; if (display.colorTransform != mat4()) { displayColorTransform = SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform)); } const bool ctModifiesAlpha = displayColorTransform && !displayColorTransform->isAlphaUnchanged(); // Find if any layers have requested blur, we'll use that info to decide when to render to an // offscreen buffer and when to render to the native buffer. sk_sp activeSurface(dstSurface); SkCanvas* canvas = dstCanvas; SkiaCapture::OffscreenState offscreenCaptureState; const LayerSettings* blurCompositionLayer = nullptr; if (mBlurFilter) { bool requiresCompositionLayer = false; for (const auto& layer : layers) { // if the layer doesn't have blur or it is not visible then continue if (!layerHasBlur(layer, ctModifiesAlpha)) { continue; } if (layer->backgroundBlurRadius > 0 && layer->backgroundBlurRadius < BlurFilter::kMaxCrossFadeRadius) { requiresCompositionLayer = true; } for (auto region : layer->blurRegions) { if (region.blurRadius < BlurFilter::kMaxCrossFadeRadius) { requiresCompositionLayer = true; } } if (requiresCompositionLayer) { activeSurface = dstSurface->makeSurface(dstSurface->imageInfo()); canvas = mCapture->tryOffscreenCapture(activeSurface.get(), &offscreenCaptureState); blurCompositionLayer = layer; break; } } } AutoSaveRestore surfaceAutoSaveRestore(canvas); // Clear the entire canvas with a transparent black to prevent ghost images. canvas->clear(SK_ColorTRANSPARENT); initCanvas(canvas, display); // TODO: clearRegion was required for SurfaceView when a buffer is not yet available but the // view is still on-screen. The clear region could be re-specified as a black color layer, // however. if (!display.clearRegion.isEmpty()) { ATRACE_NAME("ClearRegion"); size_t numRects = 0; Rect const* rects = display.clearRegion.getArray(&numRects); SkIRect skRects[numRects]; for (int i = 0; i < numRects; ++i) { skRects[i] = SkIRect::MakeLTRB(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom); } SkRegion clearRegion; SkPaint paint; sk_sp shader = SkShaders::Color(SkColor4f{.fR = 0., .fG = 0., .fB = 0., .fA = 1.0}, toSkColorSpace(dstDataspace)); paint.setShader(shader); clearRegion.setRects(skRects, numRects); canvas->drawRegion(clearRegion, paint); } for (const auto& layer : layers) { ATRACE_FORMAT("DrawLayer: %s", layer->name.c_str()); if (kPrintLayerSettings) { std::stringstream ls; PrintTo(*layer, &ls); auto debugs = ls.str(); int pos = 0; while (pos < debugs.size()) { ALOGD("cache_debug %s", debugs.substr(pos, 1000).c_str()); pos += 1000; } } sk_sp blurInput; if (blurCompositionLayer == layer) { LOG_ALWAYS_FATAL_IF(activeSurface == dstSurface); LOG_ALWAYS_FATAL_IF(canvas == dstCanvas); // save a snapshot of the activeSurface to use as input to the blur shaders blurInput = activeSurface->makeImageSnapshot(); // TODO we could skip this step if we know the blur will cover the entire image // blit the offscreen framebuffer into the destination AHB SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); if (CC_UNLIKELY(mCapture->isCaptureRunning())) { uint64_t id = mCapture->endOffscreenCapture(&offscreenCaptureState); dstCanvas->drawAnnotation(SkRect::Make(dstCanvas->imageInfo().dimensions()), String8::format("SurfaceID|%" PRId64, id).c_str(), nullptr); // HUANGLONG BEGIN if (mCanKeystone) { dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions({SkFilterMode::kLinear, SkMipmapMode::kNone}), &paint); } else { dstCanvas->drawImage(blurInput, 0, 0, SkSamplingOptions(), &paint); } // HUANGLONG END } else { // HUANGLONG BEGIN if (mCanKeystone) { activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions({SkFilterMode::kLinear, SkMipmapMode::kNone}), &paint); } else { activeSurface->draw(dstCanvas, 0, 0, SkSamplingOptions(), &paint); } // HUANGLONG END } // assign dstCanvas to canvas and ensure that the canvas state is up to date canvas = dstCanvas; surfaceAutoSaveRestore.replace(canvas); initCanvas(canvas, display); LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getSaveCount() != dstSurface->getCanvas()->getSaveCount()); LOG_ALWAYS_FATAL_IF(activeSurface->getCanvas()->getTotalMatrix() != dstSurface->getCanvas()->getTotalMatrix()); // assign dstSurface to activeSurface activeSurface = dstSurface; } SkAutoCanvasRestore layerAutoSaveRestore(canvas, true); if (CC_UNLIKELY(mCapture->isCaptureRunning())) { // Record the name of the layer if the capture is running. std::stringstream layerSettings; PrintTo(*layer, &layerSettings); // Store the LayerSettings in additional information. canvas->drawAnnotation(SkRect::MakeEmpty(), layer->name.c_str(), SkData::MakeWithCString(layerSettings.str().c_str())); } // Layers have a local transform that should be applied to them // HUANGLONG begin // when keystone is open, postConcat keystone matrix again. SkMatrix matrix = getSkM44(layer->geometry.positionTransform).asM33(); if (mCanKeystone) { matrix.postConcat(keystoneMatrix); } canvas->concat(matrix); // HUANGLONG end const auto [bounds, roundRectClip] = getBoundsAndClip(layer->geometry.boundaries, layer->geometry.roundedCornersCrop, layer->geometry.roundedCornersRadius); if (mBlurFilter && layerHasBlur(layer, ctModifiesAlpha)) { std::unordered_map> cachedBlurs; // if multiple layers have blur, then we need to take a snapshot now because // only the lowest layer will have blurImage populated earlier if (!blurInput) { blurInput = activeSurface->makeImageSnapshot(); } // rect to be blurred in the coordinate space of blurInput const auto blurRect = canvas->getTotalMatrix().mapRect(bounds.rect()); // if the clip needs to be applied then apply it now and make sure // it is restored before we attempt to draw any shadows. SkAutoCanvasRestore acr(canvas, true); if (!roundRectClip.isEmpty()) { canvas->clipRRect(roundRectClip, true); } // TODO(b/182216890): Filter out empty layers earlier if (blurRect.width() > 0 && blurRect.height() > 0) { if (layer->backgroundBlurRadius > 0) { ATRACE_NAME("BackgroundBlur"); auto blurredImage = mBlurFilter->generate(grContext, layer->backgroundBlurRadius, blurInput, blurRect); cachedBlurs[layer->backgroundBlurRadius] = blurredImage; mBlurFilter->drawBlurRegion(canvas, bounds, layer->backgroundBlurRadius, 1.0f, blurRect, blurredImage, blurInput); } canvas->concat(getSkM44(layer->blurRegionTransform).asM33()); for (auto region : layer->blurRegions) { if (cachedBlurs[region.blurRadius] == nullptr) { ATRACE_NAME("BlurRegion"); cachedBlurs[region.blurRadius] = mBlurFilter->generate(grContext, region.blurRadius, blurInput, blurRect); } mBlurFilter->drawBlurRegion(canvas, getBlurRRect(region), region.blurRadius, region.alpha, blurRect, cachedBlurs[region.blurRadius], blurInput); } } } if (layer->shadow.length > 0) { // This would require a new parameter/flag to SkShadowUtils::DrawShadow LOG_ALWAYS_FATAL_IF(layer->disableBlending, "Cannot disableBlending with a shadow"); SkRRect shadowBounds, shadowClip; if (layer->geometry.boundaries == layer->shadow.boundaries) { shadowBounds = bounds; shadowClip = roundRectClip; } else { std::tie(shadowBounds, shadowClip) = getBoundsAndClip(layer->shadow.boundaries, layer->geometry.roundedCornersCrop, layer->geometry.roundedCornersRadius); } // Technically, if bounds is a rect and roundRectClip is not empty, // it means that the bounds and roundedCornersCrop were different // enough that we should intersect them to find the proper shadow. // In practice, this often happens when the two rectangles appear to // not match due to rounding errors. Draw the rounded version, which // looks more like the intent. const auto& rrect = shadowBounds.isRect() && !shadowClip.isEmpty() ? shadowClip : shadowBounds; drawShadow(canvas, rrect, layer->shadow); } const bool requiresLinearEffect = layer->colorTransform != mat4() || (mUseColorManagement && needsToneMapping(layer->sourceDataspace, display.outputDataspace)) || (display.sdrWhitePointNits > 0.f && display.sdrWhitePointNits != display.maxLuminance); // quick abort from drawing the remaining portion of the layer if (layer->skipContentDraw || (layer->alpha == 0 && !requiresLinearEffect && !layer->disableBlending && (!displayColorTransform || displayColorTransform->isAlphaUnchanged()))) { continue; } // If we need to map to linear space or color management is disabled, then mark the source // image with the same colorspace as the destination surface so that Skia's color // management is a no-op. const ui::Dataspace layerDataspace = (!mUseColorManagement || requiresLinearEffect) ? dstDataspace : layer->sourceDataspace; SkPaint paint; if (layer->source.buffer.buffer) { ATRACE_NAME("DrawImage"); validateInputBufferUsage(layer->source.buffer.buffer->getBuffer()); const auto& item = layer->source.buffer; std::shared_ptr imageTextureRef = nullptr; if (const auto& iter = cache.find(item.buffer->getBuffer()->getId()); iter != cache.end()) { imageTextureRef = iter->second; } else { // If we didn't find the image in the cache, then create a local ref but don't cache // it. If we're using skia, we're guaranteed to run on a dedicated GPU thread so if // we didn't find anything in the cache then we intentionally did not cache this // buffer's resources. imageTextureRef = std::make_shared< AutoBackendTexture::LocalRef>(grContext, item.buffer->getBuffer()->toAHardwareBuffer(), false, mTextureCleanupMgr); } // isOpaque means we need to ignore the alpha in the image, // replacing it with the alpha specified by the LayerSettings. See // https://developer.android.com/reference/android/view/SurfaceControl.Builder#setOpaque(boolean) // The proper way to do this is to use an SkColorType that ignores // alpha, like kRGB_888x_SkColorType, and that is used if the // incoming image is kRGBA_8888_SkColorType. However, the incoming // image may be kRGBA_F16_SkColorType, for which there is no RGBX // SkColorType, or kRGBA_1010102_SkColorType, for which we have // kRGB_101010x_SkColorType, but it is not yet supported as a source // on the GPU. (Adding both is tracked in skbug.com/12048.) In the // meantime, we'll use a workaround that works unless we need to do // any color conversion. The workaround requires that we pretend the // image is already premultiplied, so that we do not premultiply it // before applying SkBlendMode::kPlus. const bool useIsOpaqueWorkaround = item.isOpaque && (imageTextureRef->colorType() == kRGBA_1010102_SkColorType || imageTextureRef->colorType() == kRGBA_F16_SkColorType); const auto alphaType = useIsOpaqueWorkaround ? kPremul_SkAlphaType : item.isOpaque ? kOpaque_SkAlphaType : item.usePremultipliedAlpha ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; sk_sp image = imageTextureRef->makeImage(layerDataspace, alphaType, grContext); auto texMatrix = getSkM44(item.textureTransform).asM33(); // textureTansform was intended to be passed directly into a shader, so when // building the total matrix with the textureTransform we need to first // normalize it, then apply the textureTransform, then scale back up. texMatrix.preScale(1.0f / bounds.width(), 1.0f / bounds.height()); texMatrix.postScale(image->width(), image->height()); SkMatrix matrix; if (!texMatrix.invert(&matrix)) { matrix = texMatrix; } // The shader does not respect the translation, so we add it to the texture // transform for the SkImage. This will make sure that the correct layer contents // are drawn in the correct part of the screen. matrix.postTranslate(bounds.rect().fLeft, bounds.rect().fTop); sk_sp shader; if (layer->source.buffer.useTextureFiltering) { shader = image->makeShader(SkTileMode::kClamp, SkTileMode::kClamp, SkSamplingOptions( {SkFilterMode::kLinear, SkMipmapMode::kNone}), &matrix); } else { // HUANGLONG BEGIN if (mCanKeystone) { shader = image->makeShader(SkSamplingOptions({SkFilterMode::kLinear, SkMipmapMode::kNone}), matrix); } else { shader = image->makeShader(SkSamplingOptions(), matrix); } // HUANGLONG END } if (useIsOpaqueWorkaround) { shader = SkShaders::Blend(SkBlendMode::kPlus, shader, SkShaders::Color(SkColors::kBlack, toSkColorSpace(layerDataspace))); } paint.setShader(createRuntimeEffectShader(shader, layer, display, !item.isOpaque && item.usePremultipliedAlpha, requiresLinearEffect)); paint.setAlphaf(layer->alpha); } else { ATRACE_NAME("DrawColor"); const auto color = layer->source.solidColor; sk_sp shader = SkShaders::Color(SkColor4f{.fR = color.r, .fG = color.g, .fB = color.b, .fA = layer->alpha}, toSkColorSpace(layerDataspace)); paint.setShader(createRuntimeEffectShader(shader, layer, display, /* undoPremultipliedAlpha */ false, requiresLinearEffect)); } if (layer->disableBlending) { paint.setBlendMode(SkBlendMode::kSrc); } paint.setColorFilter(displayColorTransform); if (!roundRectClip.isEmpty()) { canvas->clipRRect(roundRectClip, true); } // HUANGLONG BEGIN // after keystone, The boundary will no longer be rectangular, so we need Edge serration. if (!bounds.isRect() || mCanKeystone) { paint.setAntiAlias(true); canvas->drawRRect(bounds, paint); } else { canvas->drawRect(bounds.rect(), paint); } // HUANGLONG END if (kFlushAfterEveryLayer) { ATRACE_NAME("flush surface"); activeSurface->flush(); } } surfaceAutoSaveRestore.restore(); mCapture->endCapture(); { ATRACE_NAME("flush surface"); LOG_ALWAYS_FATAL_IF(activeSurface != dstSurface); activeSurface->flush(); } if (drawFence != nullptr) { *drawFence = flush(); } // If flush failed or we don't support native fences, we need to force the // gl command stream to be executed. bool requireSync = drawFence == nullptr || drawFence->get() < 0; if (requireSync) { ATRACE_BEGIN("Submit(sync=true)"); } else { ATRACE_BEGIN("Submit(sync=false)"); } bool success = grContext->submit(requireSync); ATRACE_END(); if (!success) { ALOGE("Failed to flush RenderEngine commands"); // Chances are, something illegal happened (either the caller passed // us bad parameters, or we messed up our shader generation). return INVALID_OPERATION; } // checkErrors(); return NO_ERROR; } inline SkRect SkiaGLRenderEngine::getSkRect(const FloatRect& rect) { return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); } inline SkRect SkiaGLRenderEngine::getSkRect(const Rect& rect) { return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom); } inline std::pair SkiaGLRenderEngine::getBoundsAndClip(const FloatRect& boundsRect, const FloatRect& cropRect, const float cornerRadius) { const SkRect bounds = getSkRect(boundsRect); const SkRect crop = getSkRect(cropRect); SkRRect clip; if (cornerRadius > 0) { // it the crop and the bounds are equivalent or there is no crop then we don't need a clip if (bounds == crop || crop.isEmpty()) { return {SkRRect::MakeRectXY(bounds, cornerRadius, cornerRadius), clip}; } // This makes an effort to speed up common, simple bounds + clip combinations by // converting them to a single RRect draw. It is possible there are other cases // that can be converted. if (crop.contains(bounds)) { bool intersectionIsRoundRect = true; // check each cropped corner to ensure that it exactly matches the crop or is full SkVector radii[4]; const auto insetCrop = crop.makeInset(cornerRadius, cornerRadius); const bool leftEqual = bounds.fLeft == crop.fLeft; const bool topEqual = bounds.fTop == crop.fTop; const bool rightEqual = bounds.fRight == crop.fRight; const bool bottomEqual = bounds.fBottom == crop.fBottom; // compute the UpperLeft corner radius if (leftEqual && topEqual) { radii[0].set(cornerRadius, cornerRadius); } else if ((leftEqual && bounds.fTop >= insetCrop.fTop) || (topEqual && bounds.fLeft >= insetCrop.fLeft) || insetCrop.contains(bounds.fLeft, bounds.fTop)) { radii[0].set(0, 0); } else { intersectionIsRoundRect = false; } // compute the UpperRight corner radius if (rightEqual && topEqual) { radii[1].set(cornerRadius, cornerRadius); } else if ((rightEqual && bounds.fTop >= insetCrop.fTop) || (topEqual && bounds.fRight <= insetCrop.fRight) || insetCrop.contains(bounds.fRight, bounds.fTop)) { radii[1].set(0, 0); } else { intersectionIsRoundRect = false; } // compute the BottomRight corner radius if (rightEqual && bottomEqual) { radii[2].set(cornerRadius, cornerRadius); } else if ((rightEqual && bounds.fBottom <= insetCrop.fBottom) || (bottomEqual && bounds.fRight <= insetCrop.fRight) || insetCrop.contains(bounds.fRight, bounds.fBottom)) { radii[2].set(0, 0); } else { intersectionIsRoundRect = false; } // compute the BottomLeft corner radius if (leftEqual && bottomEqual) { radii[3].set(cornerRadius, cornerRadius); } else if ((leftEqual && bounds.fBottom <= insetCrop.fBottom) || (bottomEqual && bounds.fLeft >= insetCrop.fLeft) || insetCrop.contains(bounds.fLeft, bounds.fBottom)) { radii[3].set(0, 0); } else { intersectionIsRoundRect = false; } if (intersectionIsRoundRect) { SkRRect intersectionBounds; intersectionBounds.setRectRadii(bounds, radii); return {intersectionBounds, clip}; } } // we didn't it any of our fast paths so set the clip to the cropRect clip.setRectXY(crop, cornerRadius, cornerRadius); } // if we hit this point then we either don't have rounded corners or we are going to rely // on the clip to round the corners for us return {SkRRect::MakeRect(bounds), clip}; } inline bool SkiaGLRenderEngine::layerHasBlur(const LayerSettings* layer, bool colorTransformModifiesAlpha) { if (layer->backgroundBlurRadius > 0 || layer->blurRegions.size()) { // return false if the content is opaque and would therefore occlude the blur const bool opaqueContent = !layer->source.buffer.buffer || layer->source.buffer.isOpaque; const bool opaqueAlpha = layer->alpha == 1.0f && !colorTransformModifiesAlpha; return layer->skipContentDraw || !(opaqueContent && opaqueAlpha); } return false; } inline SkColor SkiaGLRenderEngine::getSkColor(const vec4& color) { return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255); } inline SkM44 SkiaGLRenderEngine::getSkM44(const mat4& matrix) { return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1], matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2], matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]); } inline SkPoint3 SkiaGLRenderEngine::getSkPoint3(const vec3& vector) { return SkPoint3::Make(vector.x, vector.y, vector.z); } size_t SkiaGLRenderEngine::getMaxTextureSize() const { return mGrContext->maxTextureSize(); } size_t SkiaGLRenderEngine::getMaxViewportDims() const { return mGrContext->maxRenderTargetSize(); } void SkiaGLRenderEngine::drawShadow(SkCanvas* canvas, const SkRRect& casterRRect, const ShadowSettings& settings) { ATRACE_CALL(); const float casterZ = settings.length / 2.0f; const auto flags = settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag; SkShadowUtils::DrawShadow(canvas, SkPath::RRect(casterRRect), SkPoint3::Make(0, 0, casterZ), getSkPoint3(settings.lightPos), settings.lightRadius, getSkColor(settings.ambientColor), getSkColor(settings.spotColor), flags); } EGLContext SkiaGLRenderEngine::createEglContext(EGLDisplay display, EGLConfig config, EGLContext shareContext, std::optional contextPriority, Protection protection) { EGLint renderableType = 0; if (config == EGL_NO_CONFIG_KHR) { renderableType = EGL_OPENGL_ES3_BIT; } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) { LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE"); } EGLint contextClientVersion = 0; if (renderableType & EGL_OPENGL_ES3_BIT) { contextClientVersion = 3; } else if (renderableType & EGL_OPENGL_ES2_BIT) { contextClientVersion = 2; } else if (renderableType & EGL_OPENGL_ES_BIT) { contextClientVersion = 1; } else { LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs"); } std::vector contextAttributes; contextAttributes.reserve(7); contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION); contextAttributes.push_back(contextClientVersion); if (contextPriority) { contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG); switch (*contextPriority) { case ContextPriority::REALTIME: contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV); break; case ContextPriority::MEDIUM: contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG); break; case ContextPriority::LOW: contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG); break; case ContextPriority::HIGH: default: contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG); break; } } if (protection == Protection::PROTECTED) { contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT); contextAttributes.push_back(EGL_TRUE); } contextAttributes.push_back(EGL_NONE); EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data()); if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) { // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus // EGL_NO_CONTEXT so that we can abort. if (config != EGL_NO_CONFIG_KHR) { return context; } // If |config| is EGL_NO_CONFIG_KHR, we speculatively try to create GLES 3 context, so we // should try to fall back to GLES 2. contextAttributes[1] = 2; context = eglCreateContext(display, config, shareContext, contextAttributes.data()); } return context; } std::optional SkiaGLRenderEngine::createContextPriority( const RenderEngineCreationArgs& args) { if (!gl::GLExtensions::getInstance().hasContextPriority()) { return std::nullopt; } switch (args.contextPriority) { case RenderEngine::ContextPriority::REALTIME: if (gl::GLExtensions::getInstance().hasRealtimePriority()) { return RenderEngine::ContextPriority::REALTIME; } else { ALOGI("Realtime priority unsupported, degrading gracefully to high priority"); return RenderEngine::ContextPriority::HIGH; } case RenderEngine::ContextPriority::HIGH: case RenderEngine::ContextPriority::MEDIUM: case RenderEngine::ContextPriority::LOW: return args.contextPriority; default: return std::nullopt; } } EGLSurface SkiaGLRenderEngine::createPlaceholderEglPbufferSurface(EGLDisplay display, EGLConfig config, int hwcFormat, Protection protection) { EGLConfig placeholderConfig = config; if (placeholderConfig == EGL_NO_CONFIG_KHR) { placeholderConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); } std::vector attributes; attributes.reserve(7); attributes.push_back(EGL_WIDTH); attributes.push_back(1); attributes.push_back(EGL_HEIGHT); attributes.push_back(1); if (protection == Protection::PROTECTED) { attributes.push_back(EGL_PROTECTED_CONTENT_EXT); attributes.push_back(EGL_TRUE); } attributes.push_back(EGL_NONE); return eglCreatePbufferSurface(display, placeholderConfig, attributes.data()); } int SkiaGLRenderEngine::getContextPriority() { int value; eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value); return value; } void SkiaGLRenderEngine::onPrimaryDisplaySizeChanged(ui::Size size) { // This cache multiplier was selected based on review of cache sizes relative // to the screen resolution. Looking at the worst case memory needed by blur (~1.5x), // shadows (~1x), and general data structures (e.g. vertex buffers) we selected this as a // conservative default based on that analysis. const float SURFACE_SIZE_MULTIPLIER = 3.5f * bytesPerPixel(mDefaultPixelFormat); const int maxResourceBytes = size.width * size.height * SURFACE_SIZE_MULTIPLIER; // start by resizing the current context getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); // if it is possible to switch contexts then we will resize the other context const bool originalProtectedState = mInProtectedContext; useProtectedContext(!mInProtectedContext); if (mInProtectedContext != originalProtectedState) { getActiveGrContext()->setResourceCacheLimit(maxResourceBytes); // reset back to the initial context that was active when this method was called useProtectedContext(originalProtectedState); } } void SkiaGLRenderEngine::dump(std::string& result) { const gl::GLExtensions& extensions = gl::GLExtensions::getInstance(); StringAppendF(&result, "\n ------------RE-----------------\n"); StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion()); StringAppendF(&result, "%s\n", extensions.getEGLExtensions()); StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(), extensions.getVersion()); StringAppendF(&result, "%s\n", extensions.getExtensions()); StringAppendF(&result, "RenderEngine supports protected context: %d\n", supportsProtectedContent()); StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); StringAppendF(&result, "RenderEngine shaders cached since last dump/primeCache: %d\n", mSkSLCacheMonitor.shadersCachedSinceLastCall()); std::vector cpuResourceMap = { {"skia/sk_resource_cache/bitmap_", "Bitmaps"}, {"skia/sk_resource_cache/rrect-blur_", "Masks"}, {"skia/sk_resource_cache/rects-blur_", "Masks"}, {"skia/sk_resource_cache/tessellated", "Shadows"}, {"skia", "Other"}, }; SkiaMemoryReporter cpuReporter(cpuResourceMap, false); SkGraphics::DumpMemoryStatistics(&cpuReporter); StringAppendF(&result, "Skia CPU Caches: "); cpuReporter.logTotals(result); cpuReporter.logOutput(result); { std::lock_guard lock(mRenderingMutex); std::vector gpuResourceMap = { {"texture_renderbuffer", "Texture/RenderBuffer"}, {"texture", "Texture"}, {"gr_text_blob_cache", "Text"}, {"skia", "Other"}, }; SkiaMemoryReporter gpuReporter(gpuResourceMap, true); mGrContext->dumpMemoryStatistics(&gpuReporter); StringAppendF(&result, "Skia's GPU Caches: "); gpuReporter.logTotals(result); gpuReporter.logOutput(result); StringAppendF(&result, "Skia's Wrapped Objects:\n"); gpuReporter.logOutput(result, true); StringAppendF(&result, "RenderEngine tracked buffers: %zu\n", mGraphicBufferExternalRefs.size()); StringAppendF(&result, "Dumping buffer ids...\n"); for (const auto& [id, refCounts] : mGraphicBufferExternalRefs) { StringAppendF(&result, "- 0x%" PRIx64 " - %d refs \n", id, refCounts); } StringAppendF(&result, "RenderEngine AHB/BackendTexture cache size: %zu\n", mTextureCache.size()); StringAppendF(&result, "Dumping buffer ids...\n"); // TODO(178539829): It would be nice to know which layer these are coming from and what // the texture sizes are. for (const auto& [id, unused] : mTextureCache) { StringAppendF(&result, "- 0x%" PRIx64 "\n", id); } StringAppendF(&result, "\n"); SkiaMemoryReporter gpuProtectedReporter(gpuResourceMap, true); if (mProtectedGrContext) { mProtectedGrContext->dumpMemoryStatistics(&gpuProtectedReporter); } StringAppendF(&result, "Skia's GPU Protected Caches: "); gpuProtectedReporter.logTotals(result); gpuProtectedReporter.logOutput(result); StringAppendF(&result, "Skia's Protected Wrapped Objects:\n"); gpuProtectedReporter.logOutput(result, true); StringAppendF(&result, "\n"); StringAppendF(&result, "RenderEngine runtime effects: %zu\n", mRuntimeEffects.size()); for (const auto& [linearEffect, unused] : mRuntimeEffects) { StringAppendF(&result, "- inputDataspace: %s\n", dataspaceDetails( static_cast(linearEffect.inputDataspace)) .c_str()); StringAppendF(&result, "- outputDataspace: %s\n", dataspaceDetails( static_cast(linearEffect.outputDataspace)) .c_str()); StringAppendF(&result, "undoPremultipliedAlpha: %s\n", linearEffect.undoPremultipliedAlpha ? "true" : "false"); } } StringAppendF(&result, "\n"); } } // namespace skia } // namespace renderengine } // namespace android