/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "EventHub.h" #include "UinputDevice.h" #include #include #include #include #include #define TAG "EventHub_test" using android::createUinputDevice; using android::EventHub; using android::EventHubInterface; using android::InputDeviceIdentifier; using android::RawEvent; using android::sp; using android::UinputHomeKey; using std::chrono_literals::operator""ms; using std::chrono_literals::operator""s; static constexpr bool DEBUG = false; static void dumpEvents(const std::vector& events) { for (const RawEvent& event : events) { if (event.type >= EventHubInterface::FIRST_SYNTHETIC_EVENT) { switch (event.type) { case EventHubInterface::DEVICE_ADDED: ALOGI("Device added: %i", event.deviceId); break; case EventHubInterface::DEVICE_REMOVED: ALOGI("Device removed: %i", event.deviceId); break; case EventHubInterface::FINISHED_DEVICE_SCAN: ALOGI("Finished device scan."); break; } } else { ALOGI("Device %" PRId32 " : time = %" PRId64 ", type %i, code %i, value %i", event.deviceId, event.when, event.type, event.code, event.value); } } } // --- EventHubTest --- class EventHubTest : public testing::Test { protected: std::unique_ptr mEventHub; // We are only going to emulate a single input device currently. std::unique_ptr mKeyboard; int32_t mDeviceId; virtual void SetUp() override { mEventHub = std::make_unique(); consumeInitialDeviceAddedEvents(); mKeyboard = createUinputDevice(); ASSERT_NO_FATAL_FAILURE(mDeviceId = waitForDeviceCreation()); } virtual void TearDown() override { mKeyboard.reset(); waitForDeviceClose(mDeviceId); assertNoMoreEvents(); } /** * Return the device id of the created device. */ int32_t waitForDeviceCreation(); void waitForDeviceClose(int32_t deviceId); void consumeInitialDeviceAddedEvents(); void assertNoMoreEvents(); /** * Read events from the EventHub. * * If expectedEvents is set, wait for a significant period of time to try and ensure that * the expected number of events has been read. The number of returned events * may be smaller (if timeout has been reached) or larger than expectedEvents. * * If expectedEvents is not set, return all of the immediately available events. */ std::vector getEvents(std::optional expectedEvents = std::nullopt); }; std::vector EventHubTest::getEvents(std::optional expectedEvents) { static constexpr size_t EVENT_BUFFER_SIZE = 256; std::array eventBuffer; std::vector events; while (true) { std::chrono::milliseconds timeout = 0s; if (expectedEvents) { timeout = 2s; } const size_t count = mEventHub->getEvents(timeout.count(), eventBuffer.data(), eventBuffer.size()); if (count == 0) { break; } events.insert(events.end(), eventBuffer.begin(), eventBuffer.begin() + count); if (expectedEvents && events.size() >= *expectedEvents) { break; } } if (DEBUG) { dumpEvents(events); } return events; } /** * Since the test runs on a real platform, there will be existing devices * in addition to the test devices being added. Therefore, when EventHub is first created, * it will return a lot of "device added" type of events. */ void EventHubTest::consumeInitialDeviceAddedEvents() { std::vector events = getEvents(); std::set existingDevices; // All of the events should be DEVICE_ADDED type, except the last one. for (size_t i = 0; i < events.size() - 1; i++) { const RawEvent& event = events[i]; EXPECT_EQ(EventHubInterface::DEVICE_ADDED, event.type); existingDevices.insert(event.deviceId); } // None of the existing system devices should be changing while this test is run. // Check that the returned device ids are unique for all of the existing devices. EXPECT_EQ(existingDevices.size(), events.size() - 1); // The last event should be "finished device scan" EXPECT_EQ(EventHubInterface::FINISHED_DEVICE_SCAN, events[events.size() - 1].type); } int32_t EventHubTest::waitForDeviceCreation() { // Wait a little longer than usual, to ensure input device has time to be created std::vector events = getEvents(2); if (events.size() != 2) { ADD_FAILURE() << "Instead of 2 events, received " << events.size(); return 0; // this value is unused } const RawEvent& deviceAddedEvent = events[0]; EXPECT_EQ(static_cast(EventHubInterface::DEVICE_ADDED), deviceAddedEvent.type); InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceAddedEvent.deviceId); const int32_t deviceId = deviceAddedEvent.deviceId; EXPECT_EQ(identifier.name, mKeyboard->getName()); const RawEvent& finishedDeviceScanEvent = events[1]; EXPECT_EQ(static_cast(EventHubInterface::FINISHED_DEVICE_SCAN), finishedDeviceScanEvent.type); return deviceId; } void EventHubTest::waitForDeviceClose(int32_t deviceId) { std::vector events = getEvents(2); ASSERT_EQ(2U, events.size()); const RawEvent& deviceRemovedEvent = events[0]; EXPECT_EQ(static_cast(EventHubInterface::DEVICE_REMOVED), deviceRemovedEvent.type); EXPECT_EQ(deviceId, deviceRemovedEvent.deviceId); const RawEvent& finishedDeviceScanEvent = events[1]; EXPECT_EQ(static_cast(EventHubInterface::FINISHED_DEVICE_SCAN), finishedDeviceScanEvent.type); } void EventHubTest::assertNoMoreEvents() { std::vector events = getEvents(); ASSERT_TRUE(events.empty()); } /** * Ensure that input_events are generated with monotonic clock. * That means input_event should receive a timestamp that is in the future of the time * before the event was sent. * Input system uses CLOCK_MONOTONIC everywhere in the code base. */ TEST_F(EventHubTest, InputEvent_TimestampIsMonotonic) { nsecs_t lastEventTime = systemTime(SYSTEM_TIME_MONOTONIC); ASSERT_NO_FATAL_FAILURE(mKeyboard->pressAndReleaseHomeKey()); std::vector events = getEvents(4); ASSERT_EQ(4U, events.size()) << "Expected to receive 2 keys and 2 syncs, total of 4 events"; for (const RawEvent& event : events) { // Cannot use strict comparison because the events may happen too quickly ASSERT_LE(lastEventTime, event.when) << "Event must have occurred after the key was sent"; ASSERT_LT(std::chrono::nanoseconds(event.when - lastEventTime), 100ms) << "Event times are too far apart"; lastEventTime = event.when; // Ensure all returned events are monotonic } } // --- BitArrayTest --- class BitArrayTest : public testing::Test { protected: static constexpr size_t SINGLE_ELE_BITS = 32UL; static constexpr size_t MULTI_ELE_BITS = 256UL; virtual void SetUp() override { mBitmaskSingle.loadFromBuffer(mBufferSingle); mBitmaskMulti.loadFromBuffer(mBufferMulti); } android::BitArray mBitmaskSingle; android::BitArray mBitmaskMulti; private: const typename android::BitArray::Buffer mBufferSingle = { 0x800F0F0FUL // bit 0 - 31 }; const typename android::BitArray::Buffer mBufferMulti = { 0xFFFFFFFFUL, // bit 0 - 31 0x01000001UL, // bit 32 - 63 0x00000000UL, // bit 64 - 95 0x80000000UL, // bit 96 - 127 0x00000000UL, // bit 128 - 159 0x00000000UL, // bit 160 - 191 0x80000008UL, // bit 192 - 223 0x00000000UL, // bit 224 - 255 }; }; TEST_F(BitArrayTest, SetBit) { ASSERT_TRUE(mBitmaskSingle.test(0)); ASSERT_TRUE(mBitmaskSingle.test(31)); ASSERT_FALSE(mBitmaskSingle.test(7)); ASSERT_TRUE(mBitmaskMulti.test(32)); ASSERT_TRUE(mBitmaskMulti.test(56)); ASSERT_FALSE(mBitmaskMulti.test(192)); ASSERT_TRUE(mBitmaskMulti.test(223)); ASSERT_FALSE(mBitmaskMulti.test(255)); } TEST_F(BitArrayTest, AnyBit) { ASSERT_TRUE(mBitmaskSingle.any(31, 32)); ASSERT_FALSE(mBitmaskSingle.any(12, 16)); ASSERT_TRUE(mBitmaskMulti.any(31, 32)); ASSERT_FALSE(mBitmaskMulti.any(33, 33)); ASSERT_TRUE(mBitmaskMulti.any(32, 55)); ASSERT_TRUE(mBitmaskMulti.any(33, 57)); ASSERT_FALSE(mBitmaskMulti.any(33, 55)); ASSERT_FALSE(mBitmaskMulti.any(130, 190)); ASSERT_FALSE(mBitmaskMulti.any(128, 195)); ASSERT_TRUE(mBitmaskMulti.any(128, 196)); ASSERT_TRUE(mBitmaskMulti.any(128, 224)); ASSERT_FALSE(mBitmaskMulti.any(255, 256)); } TEST_F(BitArrayTest, SetBit_InvalidBitIndex) { ASSERT_FALSE(mBitmaskSingle.test(32)); ASSERT_FALSE(mBitmaskMulti.test(256)); } TEST_F(BitArrayTest, AnyBit_InvalidBitIndex) { ASSERT_FALSE(mBitmaskSingle.any(32, 32)); ASSERT_FALSE(mBitmaskSingle.any(33, 34)); ASSERT_FALSE(mBitmaskMulti.any(256, 256)); ASSERT_FALSE(mBitmaskMulti.any(257, 258)); ASSERT_FALSE(mBitmaskMulti.any(0, 0)); }