/* * Copyright 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "powerhal-libperfmgr" #define ATRACE_TAG (ATRACE_TAG_POWER | ATRACE_TAG_HAL) #include #include #include #include #include #include #include #include #include "PowerHintSession.h" #include "PowerSessionManager.h" namespace aidl { namespace google { namespace hardware { namespace power { namespace impl { namespace pixel { using ::android::base::StringPrintf; using std::chrono::duration_cast; using std::chrono::nanoseconds; using std::literals::chrono_literals::operator""s; constexpr char kPowerHalAdpfPidPOver[] = "vendor.powerhal.adpf.pid_p.over"; constexpr char kPowerHalAdpfPidPUnder[] = "vendor.powerhal.adpf.pid_p.under"; constexpr char kPowerHalAdpfPidI[] = "vendor.powerhal.adpf.pid_i"; constexpr char kPowerHalAdpfPidDOver[] = "vendor.powerhal.adpf.pid_d.over"; constexpr char kPowerHalAdpfPidDUnder[] = "vendor.powerhal.adpf.pid_d.under"; constexpr char kPowerHalAdpfPidIInit[] = "vendor.powerhal.adpf.pid_i.init"; constexpr char kPowerHalAdpfPidIHighLimit[] = "vendor.powerhal.adpf.pid_i.high_limit"; constexpr char kPowerHalAdpfPidILowLimit[] = "vendor.powerhal.adpf.pid_i.low_limit"; constexpr char kPowerHalAdpfUclampEnable[] = "vendor.powerhal.adpf.uclamp"; constexpr char kPowerHalAdpfUclampMinGranularity[] = "vendor.powerhal.adpf.uclamp_min.granularity"; constexpr char kPowerHalAdpfUclampMinHighLimit[] = "vendor.powerhal.adpf.uclamp_min.high_limit"; constexpr char kPowerHalAdpfUclampMinLowLimit[] = "vendor.powerhal.adpf.uclamp_min.low_limit"; constexpr char kPowerHalAdpfStaleTimeFactor[] = "vendor.powerhal.adpf.stale_timeout_factor"; constexpr char kPowerHalAdpfPSamplingWindow[] = "vendor.powerhal.adpf.p.window"; constexpr char kPowerHalAdpfISamplingWindow[] = "vendor.powerhal.adpf.i.window"; constexpr char kPowerHalAdpfDSamplingWindow[] = "vendor.powerhal.adpf.d.window"; namespace { /* there is no glibc or bionic wrapper */ struct sched_attr { __u32 size; __u32 sched_policy; __u64 sched_flags; __s32 sched_nice; __u32 sched_priority; __u64 sched_runtime; __u64 sched_deadline; __u64 sched_period; __u32 sched_util_min; __u32 sched_util_max; }; static int sched_setattr(int pid, struct sched_attr *attr, unsigned int flags) { static const bool kPowerHalAdpfUclamp = ::android::base::GetBoolProperty(kPowerHalAdpfUclampEnable, true); if (!kPowerHalAdpfUclamp) { ALOGV("PowerHintSession:%s: skip", __func__); return 0; } return syscall(__NR_sched_setattr, pid, attr, flags); } static inline int64_t ns_to_100us(int64_t ns) { return ns / 100000; } static double getDoubleProperty(const char *prop, double value) { std::string result = ::android::base::GetProperty(prop, std::to_string(value).c_str()); if (!::android::base::ParseDouble(result.c_str(), &value)) { ALOGE("PowerHintSession : failed to parse double in %s", prop); } return value; } static double sPidPOver = getDoubleProperty(kPowerHalAdpfPidPOver, 5.0); static double sPidPUnder = getDoubleProperty(kPowerHalAdpfPidPUnder, 3.0); static double sPidI = getDoubleProperty(kPowerHalAdpfPidI, 0.001); static double sPidDOver = getDoubleProperty(kPowerHalAdpfPidDOver, 500.0); static double sPidDUnder = getDoubleProperty(kPowerHalAdpfPidDUnder, 0.0); static const int64_t sPidIInit = (sPidI == 0) ? 0 : static_cast(::android::base::GetIntProperty( kPowerHalAdpfPidIInit, 200) / sPidI); static const int64_t sPidIHighLimit = (sPidI == 0) ? 0 : static_cast(::android::base::GetIntProperty( kPowerHalAdpfPidIHighLimit, 512) / sPidI); static const int64_t sPidILowLimit = (sPidI == 0) ? 0 : static_cast(::android::base::GetIntProperty( kPowerHalAdpfPidILowLimit, -120) / sPidI); static const int32_t sUclampMinHighLimit = ::android::base::GetUintProperty(kPowerHalAdpfUclampMinHighLimit, 512); static const int32_t sUclampMinLowLimit = ::android::base::GetUintProperty(kPowerHalAdpfUclampMinLowLimit, 0); static const uint32_t sUclampMinGranularity = ::android::base::GetUintProperty(kPowerHalAdpfUclampMinGranularity, 5); static const int64_t sStaleTimeFactor = ::android::base::GetUintProperty(kPowerHalAdpfStaleTimeFactor, 20); static const int64_t sPSamplingWindow = ::android::base::GetUintProperty(kPowerHalAdpfPSamplingWindow, 1); static const int64_t sISamplingWindow = ::android::base::GetUintProperty(kPowerHalAdpfISamplingWindow, 0); static const int64_t sDSamplingWindow = ::android::base::GetUintProperty(kPowerHalAdpfDSamplingWindow, 1); } // namespace PowerHintSession::PowerHintSession(int32_t tgid, int32_t uid, const std::vector &threadIds, int64_t durationNanos, const nanoseconds adpfRate) : kAdpfRate(adpfRate) { mDescriptor = new AppHintDesc(tgid, uid, threadIds); mDescriptor->duration = std::chrono::nanoseconds(durationNanos); mStaleHandler = sp(new StaleHandler(this)); mPowerManagerHandler = PowerSessionManager::getInstance(); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-target", idstr.c_str()); ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count()); sz = StringPrintf("adpf.%s-active", idstr.c_str()); ATRACE_INT(sz.c_str(), mDescriptor->is_active.load()); } PowerSessionManager::getInstance()->addPowerSession(this); // init boost setUclamp(sUclampMinHighLimit); ALOGV("PowerHintSession created: %s", mDescriptor->toString().c_str()); } PowerHintSession::~PowerHintSession() { close(); ALOGV("PowerHintSession deleted: %s", mDescriptor->toString().c_str()); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-target", idstr.c_str()); ATRACE_INT(sz.c_str(), 0); sz = StringPrintf("adpf.%s-actl_last", idstr.c_str()); ATRACE_INT(sz.c_str(), 0); sz = sz = StringPrintf("adpf.%s-active", idstr.c_str()); ATRACE_INT(sz.c_str(), 0); } delete mDescriptor; } std::string PowerHintSession::getIdString() const { std::string idstr = StringPrintf("%" PRId32 "-%" PRId32 "-%" PRIxPTR, mDescriptor->tgid, mDescriptor->uid, reinterpret_cast(this) & 0xffff); return idstr; } void PowerHintSession::updateUniveralBoostMode() { PowerHintMonitor::getInstance()->getLooper()->sendMessage(mPowerManagerHandler, NULL); } int PowerHintSession::setUclamp(int32_t min, int32_t max) { std::lock_guard guard(mLock); min = std::max(0, min); min = std::min(min, max); max = std::max(0, max); max = std::max(min, max); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-min", idstr.c_str()); ATRACE_INT(sz.c_str(), min); } for (const auto tid : mDescriptor->threadIds) { sched_attr attr = {}; attr.size = sizeof(attr); attr.sched_flags = (SCHED_FLAG_KEEP_ALL | SCHED_FLAG_UTIL_CLAMP); attr.sched_util_min = min; attr.sched_util_max = max; int ret = sched_setattr(tid, &attr, 0); if (ret) { ALOGW("sched_setattr failed for thread %d, err=%d", tid, errno); } ALOGV("PowerHintSession tid: %d, uclamp(%d, %d)", tid, min, max); } mDescriptor->current_min = min; return 0; } ndk::ScopedAStatus PowerHintSession::pause() { if (!mDescriptor->is_active.load()) return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); // Reset to default uclamp value. setUclamp(0); mDescriptor->is_active.store(false); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-active", idstr.c_str()); ATRACE_INT(sz.c_str(), mDescriptor->is_active.load()); } updateUniveralBoostMode(); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus PowerHintSession::resume() { if (mDescriptor->is_active.load()) return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); mDescriptor->is_active.store(true); mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error); // resume boost setUclamp(sUclampMinHighLimit); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-active", idstr.c_str()); ATRACE_INT(sz.c_str(), mDescriptor->is_active.load()); } updateUniveralBoostMode(); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus PowerHintSession::close() { bool sessionClosedExpectedToBe = false; if (!mSessionClosed.compare_exchange_strong(sessionClosedExpectedToBe, true)) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } PowerHintMonitor::getInstance()->getLooper()->removeMessages(mStaleHandler); setUclamp(0); PowerSessionManager::getInstance()->removePowerSession(this); updateUniveralBoostMode(); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus PowerHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) { if (targetDurationNanos <= 0) { ALOGE("Error: targetDurationNanos(%" PRId64 ") should bigger than 0", targetDurationNanos); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } ALOGV("update target duration: %" PRId64 " ns", targetDurationNanos); double ratio = targetDurationNanos == 0 ? 1.0 : mDescriptor->duration.count() / targetDurationNanos; mDescriptor->integral_error = std::max(sPidIInit, static_cast(mDescriptor->integral_error * ratio)); mDescriptor->duration = std::chrono::nanoseconds(targetDurationNanos); if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-target", idstr.c_str()); ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count()); } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus PowerHintSession::reportActualWorkDuration( const std::vector &actualDurations) { if (mDescriptor->duration.count() == 0LL) { ALOGE("Expect to call updateTargetWorkDuration() first."); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } if (actualDurations.size() == 0) { ALOGE("Error: duration.size() shouldn't be %zu.", actualDurations.size()); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (!mDescriptor->is_active.load()) { ALOGE("Error: shouldn't report duration during pause state."); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } if (PowerHintMonitor::getInstance()->isRunning() && isStale()) { if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str()); ATRACE_INT(sz.c_str(), 0); } mDescriptor->integral_error = std::max(sPidIInit, mDescriptor->integral_error); } int64_t targetDurationNanos = (int64_t)mDescriptor->duration.count(); int64_t length = actualDurations.size(); int64_t p_start = sPSamplingWindow == 0 || sPSamplingWindow > length ? 0 : length - sPSamplingWindow; int64_t i_start = sISamplingWindow == 0 || sISamplingWindow > length ? 0 : length - sISamplingWindow; int64_t d_start = sDSamplingWindow == 0 || sDSamplingWindow > length ? 0 : length - sDSamplingWindow; int64_t dt = ns_to_100us(targetDurationNanos); int64_t err_sum = 0; int64_t derivative_sum = 0; for (int64_t i = std::min({p_start, i_start, d_start}); i < length; i++) { int64_t actualDurationNanos = actualDurations[i].durationNanos; if (std::abs(actualDurationNanos) > targetDurationNanos * 20) { ALOGW("The actual duration is way far from the target (%" PRId64 " >> %" PRId64 ")", actualDurationNanos, targetDurationNanos); } // PID control algorithm int64_t error = ns_to_100us(actualDurationNanos - targetDurationNanos); if (i >= d_start) { derivative_sum += error - mDescriptor->previous_error; } if (i >= p_start) { err_sum += error; } if (i >= i_start) { mDescriptor->integral_error = mDescriptor->integral_error + error * dt; mDescriptor->integral_error = std::min(sPidIHighLimit, mDescriptor->integral_error); mDescriptor->integral_error = std::max(sPidILowLimit, mDescriptor->integral_error); } mDescriptor->previous_error = error; } int64_t pOut = static_cast((err_sum > 0 ? sPidPOver : sPidPUnder) * err_sum / (length - p_start)); int64_t iOut = static_cast(sPidI * mDescriptor->integral_error); int64_t dOut = static_cast((derivative_sum > 0 ? sPidDOver : sPidDUnder) * derivative_sum / dt / (length - d_start)); int64_t output = pOut + iOut + dOut; if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-actl_last", idstr.c_str()); ATRACE_INT(sz.c_str(), actualDurations[length - 1].durationNanos); sz = StringPrintf("adpf.%s-target", idstr.c_str()); ATRACE_INT(sz.c_str(), (int64_t)mDescriptor->duration.count()); sz = StringPrintf("adpf.%s-sample_size", idstr.c_str()); ATRACE_INT(sz.c_str(), length); sz = StringPrintf("adpf.%s-pid.count", idstr.c_str()); ATRACE_INT(sz.c_str(), mDescriptor->update_count); sz = StringPrintf("adpf.%s-pid.pOut", idstr.c_str()); ATRACE_INT(sz.c_str(), pOut); sz = StringPrintf("adpf.%s-pid.iOut", idstr.c_str()); ATRACE_INT(sz.c_str(), iOut); sz = StringPrintf("adpf.%s-pid.dOut", idstr.c_str()); ATRACE_INT(sz.c_str(), dOut); sz = StringPrintf("adpf.%s-pid.output", idstr.c_str()); ATRACE_INT(sz.c_str(), output); } mDescriptor->update_count++; mStaleHandler->updateStaleTimer(); /* apply to all the threads in the group */ if (output != 0) { int next_min = std::min(sUclampMinHighLimit, mDescriptor->current_min + static_cast(output)); next_min = std::max(sUclampMinLowLimit, next_min); if (std::abs(mDescriptor->current_min - next_min) > sUclampMinGranularity) { setUclamp(next_min); } } return ndk::ScopedAStatus::ok(); } std::string AppHintDesc::toString() const { std::string out = StringPrintf("session %" PRIxPTR "\n", reinterpret_cast(this) & 0xffff); const int64_t durationNanos = duration.count(); out.append(StringPrintf(" duration: %" PRId64 " ns\n", durationNanos)); out.append(StringPrintf(" uclamp.min: %d \n", current_min)); out.append(StringPrintf(" uid: %d, tgid: %d\n", uid, tgid)); out.append(" threadIds: ["); bool first = true; for (int tid : threadIds) { if (!first) { out.append(", "); } out.append(std::to_string(tid)); first = false; } out.append("]\n"); return out; } bool PowerHintSession::isActive() { return mDescriptor->is_active.load(); } bool PowerHintSession::isStale() { auto now = std::chrono::steady_clock::now(); return now >= mStaleHandler->getStaleTime(); } const std::vector &PowerHintSession::getTidList() const { return mDescriptor->threadIds; } void PowerHintSession::setStale() { if (ATRACE_ENABLED()) { const std::string idstr = getIdString(); std::string sz = StringPrintf("adpf.%s-stale", idstr.c_str()); ATRACE_INT(sz.c_str(), 1); } // Reset to default uclamp value. setUclamp(0); // Deliver a task to check if all sessions are inactive. updateUniveralBoostMode(); } void PowerHintSession::StaleHandler::updateStaleTimer() { std::lock_guard guard(mStaleLock); if (PowerHintMonitor::getInstance()->isRunning()) { auto when = getStaleTime(); auto now = std::chrono::steady_clock::now(); mLastUpdatedTime.store(now); if (now > when) { mSession->updateUniveralBoostMode(); } if (!mIsMonitoringStale.load()) { auto next = getStaleTime(); PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed( duration_cast(next - now).count(), this, NULL); mIsMonitoringStale.store(true); } } } time_point PowerHintSession::StaleHandler::getStaleTime() { return mLastUpdatedTime.load() + std::chrono::duration_cast(mSession->kAdpfRate) * sStaleTimeFactor; } void PowerHintSession::StaleHandler::handleMessage(const Message &) { std::lock_guard guard(mStaleLock); auto now = std::chrono::steady_clock::now(); auto when = getStaleTime(); // Check if the session is stale based on the last_updated_time. if (now > when) { mSession->setStale(); mIsMonitoringStale.store(false); return; } // Schedule for the next checking time. PowerHintMonitor::getInstance()->getLooper()->sendMessageDelayed( duration_cast(when - now).count(), this, NULL); } } // namespace pixel } // namespace impl } // namespace power } // namespace hardware } // namespace google } // namespace aidl