//===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Detect the maximal Scops of a function. // // A static control part (Scop) is a subgraph of the control flow graph (CFG) // that only has statically known control flow and can therefore be described // within the polyhedral model. // // Every Scop fulfills these restrictions: // // * It is a single entry single exit region // // * Only affine linear bounds in the loops // // Every natural loop in a Scop must have a number of loop iterations that can // be described as an affine linear function in surrounding loop iterators or // parameters. (A parameter is a scalar that does not change its value during // execution of the Scop). // // * Only comparisons of affine linear expressions in conditions // // * All loops and conditions perfectly nested // // The control flow needs to be structured such that it could be written using // just 'for' and 'if' statements, without the need for any 'goto', 'break' or // 'continue'. // // * Side effect free functions call // // Only function calls and intrinsics that do not have side effects are allowed // (readnone). // // The Scop detection finds the largest Scops by checking if the largest // region is a Scop. If this is not the case, its canonical subregions are // checked until a region is a Scop. It is now tried to extend this Scop by // creating a larger non canonical region. // //===----------------------------------------------------------------------===// #ifndef POLLY_SCOPDETECTION_H #define POLLY_SCOPDETECTION_H #include "polly/ScopDetectionDiagnostic.h" #include "polly/Support/ScopHelper.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Pass.h" #include using namespace llvm; namespace llvm { class AAResults; void initializeScopDetectionWrapperPassPass(PassRegistry &); } // namespace llvm namespace polly { using ParamSetType = std::set; // Description of the shape of an array. struct ArrayShape { // Base pointer identifying all accesses to this array. const SCEVUnknown *BasePointer; // Sizes of each delinearized dimension. SmallVector DelinearizedSizes; ArrayShape(const SCEVUnknown *B) : BasePointer(B) {} }; struct MemAcc { const Instruction *Insn; // A pointer to the shape description of the array. std::shared_ptr Shape; // Subscripts computed by delinearization. SmallVector DelinearizedSubscripts; MemAcc(const Instruction *I, std::shared_ptr S) : Insn(I), Shape(S) {} }; using MapInsnToMemAcc = std::map; using PairInstSCEV = std::pair; using AFs = std::vector; using BaseToAFs = std::map; using BaseToElSize = std::map; extern bool PollyTrackFailures; extern bool PollyDelinearize; extern bool PollyUseRuntimeAliasChecks; extern bool PollyProcessUnprofitable; extern bool PollyInvariantLoadHoisting; extern bool PollyAllowUnsignedOperations; extern bool PollyAllowFullFunction; /// A function attribute which will cause Polly to skip the function extern StringRef PollySkipFnAttr; //===----------------------------------------------------------------------===// /// Pass to detect the maximal static control parts (Scops) of a /// function. class ScopDetection { public: using RegionSet = SetVector; // Remember the valid regions RegionSet ValidRegions; /// Context variables for SCoP detection. struct DetectionContext { Region &CurRegion; // The region to check. AliasSetTracker AST; // The AliasSetTracker to hold the alias information. bool Verifying; // If we are in the verification phase? /// Container to remember rejection reasons for this region. RejectLog Log; /// Map a base pointer to all access functions accessing it. /// /// This map is indexed by the base pointer. Each element of the map /// is a list of memory accesses that reference this base pointer. BaseToAFs Accesses; /// The set of base pointers with non-affine accesses. /// /// This set contains all base pointers and the locations where they are /// used for memory accesses that can not be detected as affine accesses. SetVector> NonAffineAccesses; BaseToElSize ElementSize; /// The region has at least one load instruction. bool hasLoads = false; /// The region has at least one store instruction. bool hasStores = false; /// Flag to indicate the region has at least one unknown access. bool HasUnknownAccess = false; /// The set of non-affine subregions in the region we analyze. RegionSet NonAffineSubRegionSet; /// The set of loops contained in non-affine regions. BoxedLoopsSetTy BoxedLoopsSet; /// Loads that need to be invariant during execution. InvariantLoadsSetTy RequiredILS; /// Map to memory access description for the corresponding LLVM /// instructions. MapInsnToMemAcc InsnToMemAcc; /// Initialize a DetectionContext from scratch. DetectionContext(Region &R, AAResults &AA, bool Verify) : CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {} /// Initialize a DetectionContext with the data from @p DC. DetectionContext(const DetectionContext &&DC) : CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()), Verifying(DC.Verifying), Log(std::move(DC.Log)), Accesses(std::move(DC.Accesses)), NonAffineAccesses(std::move(DC.NonAffineAccesses)), ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads), hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess), NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)), BoxedLoopsSet(std::move(DC.BoxedLoopsSet)), RequiredILS(std::move(DC.RequiredILS)) { AST.add(DC.AST); } }; /// Helper data structure to collect statistics about loop counts. struct LoopStats { int NumLoops; int MaxDepth; }; int NextScopID = 0; int getNextID() { return NextScopID++; } private: //===--------------------------------------------------------------------===// /// Analyses used //@{ const DominatorTree &DT; ScalarEvolution &SE; LoopInfo &LI; RegionInfo &RI; AAResults &AA; //@} /// Map to remember detection contexts for all regions. using DetectionContextMapTy = DenseMap; mutable DetectionContextMapTy DetectionContextMap; /// Remove cached results for @p R. void removeCachedResults(const Region &R); /// Remove cached results for the children of @p R recursively. void removeCachedResultsRecursively(const Region &R); /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers. /// /// @param S0 A expression to check. /// @param S1 Another expression to check or nullptr. /// @param Scope The loop/scope the expressions are checked in. /// /// @returns True, if multiple possibly aliasing pointers are used in @p S0 /// (and @p S1 if given). bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const; /// Add the region @p AR as over approximated sub-region in @p Context. /// /// @param AR The non-affine subregion. /// @param Context The current detection context. /// /// @returns True if the subregion can be over approximated, false otherwise. bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const; /// Find for a given base pointer terms that hint towards dimension /// sizes of a multi-dimensional array. /// /// @param Context The current detection context. /// @param BasePointer A base pointer indicating the virtual array we are /// interested in. SmallVector getDelinearizationTerms(DetectionContext &Context, const SCEVUnknown *BasePointer) const; /// Check if the dimension size of a delinearized array is valid. /// /// @param Context The current detection context. /// @param Sizes The sizes of the different array dimensions. /// @param BasePointer The base pointer we are interested in. /// @param Scope The location where @p BasePointer is being used. /// @returns True if one or more array sizes could be derived - meaning: we /// see this array as multi-dimensional. bool hasValidArraySizes(DetectionContext &Context, SmallVectorImpl &Sizes, const SCEVUnknown *BasePointer, Loop *Scope) const; /// Derive access functions for a given base pointer. /// /// @param Context The current detection context. /// @param Sizes The sizes of the different array dimensions. /// @param BasePointer The base pointer of all the array for which to compute /// access functions. /// @param Shape The shape that describes the derived array sizes and /// which should be filled with newly computed access /// functions. /// @returns True if a set of affine access functions could be derived. bool computeAccessFunctions(DetectionContext &Context, const SCEVUnknown *BasePointer, std::shared_ptr Shape) const; /// Check if all accesses to a given BasePointer are affine. /// /// @param Context The current detection context. /// @param BasePointer the base pointer we are interested in. /// @param Scope The location where @p BasePointer is being used. /// @param True if consistent (multi-dimensional) array accesses could be /// derived for this array. bool hasBaseAffineAccesses(DetectionContext &Context, const SCEVUnknown *BasePointer, Loop *Scope) const; // Delinearize all non affine memory accesses and return false when there // exists a non affine memory access that cannot be delinearized. Return true // when all array accesses are affine after delinearization. bool hasAffineMemoryAccesses(DetectionContext &Context) const; // Try to expand the region R. If R can be expanded return the expanded // region, NULL otherwise. Region *expandRegion(Region &R); /// Find the Scops in this region tree. /// /// @param The region tree to scan for scops. void findScops(Region &R); /// Check if all basic block in the region are valid. /// /// @param Context The context of scop detection. /// /// @return True if all blocks in R are valid, false otherwise. bool allBlocksValid(DetectionContext &Context) const; /// Check if a region has sufficient compute instructions. /// /// This function checks if a region has a non-trivial number of instructions /// in each loop. This can be used as an indicator whether a loop is worth /// optimizing. /// /// @param Context The context of scop detection. /// @param NumLoops The number of loops in the region. /// /// @return True if region is has sufficient compute instructions, /// false otherwise. bool hasSufficientCompute(DetectionContext &Context, int NumAffineLoops) const; /// Check if the unique affine loop might be amendable to distribution. /// /// This function checks if the number of non-trivial blocks in the unique /// affine loop in Context.CurRegion is at least two, thus if the loop might /// be amendable to distribution. /// /// @param Context The context of scop detection. /// /// @return True only if the affine loop might be amendable to distributable. bool hasPossiblyDistributableLoop(DetectionContext &Context) const; /// Check if a region is profitable to optimize. /// /// Regions that are unlikely to expose interesting optimization opportunities /// are called 'unprofitable' and may be skipped during scop detection. /// /// @param Context The context of scop detection. /// /// @return True if region is profitable to optimize, false otherwise. bool isProfitableRegion(DetectionContext &Context) const; /// Check if a region is a Scop. /// /// @param Context The context of scop detection. /// /// @return True if R is a Scop, false otherwise. bool isValidRegion(DetectionContext &Context) const; /// Check if an intrinsic call can be part of a Scop. /// /// @param II The intrinsic call instruction to check. /// @param Context The current detection context. /// /// @return True if the call instruction is valid, false otherwise. bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const; /// Check if a call instruction can be part of a Scop. /// /// @param CI The call instruction to check. /// @param Context The current detection context. /// /// @return True if the call instruction is valid, false otherwise. bool isValidCallInst(CallInst &CI, DetectionContext &Context) const; /// Check if the given loads could be invariant and can be hoisted. /// /// If true is returned the loads are added to the required invariant loads /// contained in the @p Context. /// /// @param RequiredILS The loads to check. /// @param Context The current detection context. /// /// @return True if all loads can be assumed invariant. bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS, DetectionContext &Context) const; /// Check if a value is invariant in the region Reg. /// /// @param Val Value to check for invariance. /// @param Reg The region to consider for the invariance of Val. /// @param Ctx The current detection context. /// /// @return True if the value represented by Val is invariant in the region /// identified by Reg. bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const; /// Check if the memory access caused by @p Inst is valid. /// /// @param Inst The access instruction. /// @param AF The access function. /// @param BP The access base pointer. /// @param Context The current detection context. bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP, DetectionContext &Context) const; /// Check if a memory access can be part of a Scop. /// /// @param Inst The instruction accessing the memory. /// @param Context The context of scop detection. /// /// @return True if the memory access is valid, false otherwise. bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const; /// Check if an instruction has any non trivial scalar dependencies as part of /// a Scop. /// /// @param Inst The instruction to check. /// @param RefRegion The region in respect to which we check the access /// function. /// /// @return True if the instruction has scalar dependences, false otherwise. bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const; /// Check if an instruction can be part of a Scop. /// /// @param Inst The instruction to check. /// @param Context The context of scop detection. /// /// @return True if the instruction is valid, false otherwise. bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const; /// Check if the switch @p SI with condition @p Condition is valid. /// /// @param BB The block to check. /// @param SI The switch to check. /// @param Condition The switch condition. /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. /// @param Context The context of scop detection. /// /// @return True if the branch @p BI is valid. bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition, bool IsLoopBranch, DetectionContext &Context) const; /// Check if the branch @p BI with condition @p Condition is valid. /// /// @param BB The block to check. /// @param BI The branch to check. /// @param Condition The branch condition. /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. /// @param Context The context of scop detection. /// /// @return True if the branch @p BI is valid. bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition, bool IsLoopBranch, DetectionContext &Context) const; /// Check if the SCEV @p S is affine in the current @p Context. /// /// This will also use a heuristic to decide if we want to require loads to be /// invariant to make the expression affine or if we want to treat is as /// non-affine. /// /// @param S The expression to be checked. /// @param Scope The loop nest in which @p S is used. /// @param Context The context of scop detection. bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const; /// Check if the control flow in a basic block is valid. /// /// This function checks if a certain basic block is terminated by a /// Terminator instruction we can handle or, if this is not the case, /// registers this basic block as the start of a non-affine region. /// /// This function optionally allows unreachable statements. /// /// @param BB The BB to check the control flow. /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. // @param AllowUnreachable Allow unreachable statements. /// @param Context The context of scop detection. /// /// @return True if the BB contains only valid control flow. bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable, DetectionContext &Context) const; /// Is a loop valid with respect to a given region. /// /// @param L The loop to check. /// @param Context The context of scop detection. /// /// @return True if the loop is valid in the region. bool isValidLoop(Loop *L, DetectionContext &Context) const; /// Count the number of loops and the maximal loop depth in @p L. /// /// @param L The loop to check. /// @param SE The scalar evolution analysis. /// @param MinProfitableTrips The minimum number of trip counts from which /// a loop is assumed to be profitable and /// consequently is counted. /// returns A tuple of number of loops and their maximal depth. static ScopDetection::LoopStats countBeneficialSubLoops(Loop *L, ScalarEvolution &SE, unsigned MinProfitableTrips); /// Check if the function @p F is marked as invalid. /// /// @note An OpenMP subfunction will be marked as invalid. bool isValidFunction(Function &F); /// Can ISL compute the trip count of a loop. /// /// @param L The loop to check. /// @param Context The context of scop detection. /// /// @return True if ISL can compute the trip count of the loop. bool canUseISLTripCount(Loop *L, DetectionContext &Context) const; /// Print the locations of all detected scops. void printLocations(Function &F); /// Check if a region is reducible or not. /// /// @param Region The region to check. /// @param DbgLoc Parameter to save the location of instruction that /// causes irregular control flow if the region is irreducible. /// /// @return True if R is reducible, false otherwise. bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const; /// Track diagnostics for invalid scops. /// /// @param Context The context of scop detection. /// @param Assert Throw an assert in verify mode or not. /// @param Args Argument list that gets passed to the constructor of RR. template inline bool invalid(DetectionContext &Context, bool Assert, Args &&...Arguments) const; public: ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, RegionInfo &RI, AAResults &AA, OptimizationRemarkEmitter &ORE); /// Get the RegionInfo stored in this pass. /// /// This was added to give the DOT printer easy access to this information. RegionInfo *getRI() const { return &RI; } /// Get the LoopInfo stored in this pass. LoopInfo *getLI() const { return &LI; } /// Is the region is the maximum region of a Scop? /// /// @param R The Region to test if it is maximum. /// @param Verify Rerun the scop detection to verify SCoP was not invalidated /// meanwhile. /// /// @return Return true if R is the maximum Region in a Scop, false otherwise. bool isMaxRegionInScop(const Region &R, bool Verify = true) const; /// Return the detection context for @p R, nullptr if @p R was invalid. DetectionContext *getDetectionContext(const Region *R) const; /// Return the set of rejection causes for @p R. const RejectLog *lookupRejectionLog(const Region *R) const; /// Return true if @p SubR is a non-affine subregion in @p ScopR. bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const; /// Get a message why a region is invalid /// /// @param R The region for which we get the error message /// /// @return The error or "" if no error appeared. std::string regionIsInvalidBecause(const Region *R) const; /// @name Maximum Region In Scops Iterators /// /// These iterators iterator over all maximum region in Scops of this /// function. //@{ using iterator = RegionSet::iterator; using const_iterator = RegionSet::const_iterator; iterator begin() { return ValidRegions.begin(); } iterator end() { return ValidRegions.end(); } const_iterator begin() const { return ValidRegions.begin(); } const_iterator end() const { return ValidRegions.end(); } //@} /// Emit rejection remarks for all rejected regions. /// /// @param F The function to emit remarks for. void emitMissedRemarks(const Function &F); /// Mark the function as invalid so we will not extract any scop from /// the function. /// /// @param F The function to mark as invalid. static void markFunctionAsInvalid(Function *F); /// Verify if all valid Regions in this Function are still valid /// after some transformations. void verifyAnalysis() const; /// Verify if R is still a valid part of Scop after some transformations. /// /// @param R The Region to verify. void verifyRegion(const Region &R) const; /// Count the number of loops and the maximal loop depth in @p R. /// /// @param R The region to check /// @param SE The scalar evolution analysis. /// @param MinProfitableTrips The minimum number of trip counts from which /// a loop is assumed to be profitable and /// consequently is counted. /// returns A tuple of number of loops and their maximal depth. static ScopDetection::LoopStats countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI, unsigned MinProfitableTrips); private: /// OptimizationRemarkEmitter object used to emit diagnostic remarks OptimizationRemarkEmitter &ORE; }; struct ScopAnalysis : public AnalysisInfoMixin { static AnalysisKey Key; using Result = ScopDetection; ScopAnalysis(); Result run(Function &F, FunctionAnalysisManager &FAM); }; struct ScopAnalysisPrinterPass : public PassInfoMixin { ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); raw_ostream &OS; }; struct ScopDetectionWrapperPass : public FunctionPass { static char ID; std::unique_ptr Result; ScopDetectionWrapperPass(); /// @name FunctionPass interface //@{ void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; bool runOnFunction(Function &F) override; void print(raw_ostream &OS, const Module *) const override; //@} ScopDetection &getSD() { return *Result; } const ScopDetection &getSD() const { return *Result; } }; } // namespace polly #endif // POLLY_SCOPDETECTION_H