/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "MemoryRemote.h" #include "TestUtils.h" namespace unwindstack { enum TestTypeEnum : uint8_t { TEST_TYPE_LOCAL_UNWINDER = 0, TEST_TYPE_LOCAL_UNWINDER_FROM_PID, TEST_TYPE_LOCAL_WAIT_FOR_FINISH, TEST_TYPE_REMOTE, TEST_TYPE_REMOTE_WITH_INVALID_CALL, }; static std::atomic_bool g_ready; static volatile bool g_ready_for_remote; static volatile bool g_signal_ready_for_remote; static std::atomic_bool g_finish; static std::atomic_uintptr_t g_ucontext; static std::atomic_int g_waiters; static void ResetGlobals() { g_ready = false; g_ready_for_remote = false; g_signal_ready_for_remote = false; g_finish = false; g_ucontext = 0; g_waiters = 0; } static std::vector kFunctionOrder{"OuterFunction", "MiddleFunction", "InnerFunction"}; static std::vector kFunctionSignalOrder{"OuterFunction", "MiddleFunction", "InnerFunction", "SignalOuterFunction", "SignalMiddleFunction", "SignalInnerFunction"}; static void SignalHandler(int, siginfo_t*, void* sigcontext) { g_ucontext = reinterpret_cast(sigcontext); while (!g_finish.load()) { } } extern "C" void SignalInnerFunction() { g_signal_ready_for_remote = true; // Avoid any function calls because not every instruction will be // unwindable. // This method of looping is only used when testing a remote unwind. while (true) { } } extern "C" void SignalMiddleFunction() { SignalInnerFunction(); } extern "C" void SignalOuterFunction() { SignalMiddleFunction(); } static void SignalCallerHandler(int, siginfo_t*, void*) { SignalOuterFunction(); } static std::string ErrorMsg(const std::vector& function_names, Unwinder* unwinder) { std::string unwind; for (size_t i = 0; i < unwinder->NumFrames(); i++) { unwind += unwinder->FormatFrame(i) + '\n'; } return std::string( "Unwind completed without finding all frames\n" " Looking for function: ") + function_names.front() + "\n" + "Unwind data:\n" + unwind; } static void VerifyUnwindFrames(Unwinder* unwinder, std::vector expected_function_names) { for (auto& frame : unwinder->frames()) { if (frame.function_name == expected_function_names.back()) { expected_function_names.pop_back(); if (expected_function_names.empty()) { break; } } } ASSERT_TRUE(expected_function_names.empty()) << ErrorMsg(expected_function_names, unwinder); } static void VerifyUnwind(Unwinder* unwinder, std::vector expected_function_names) { unwinder->Unwind(); VerifyUnwindFrames(unwinder, expected_function_names); } static void VerifyUnwind(pid_t pid, Maps* maps, Regs* regs, std::vector expected_function_names) { auto process_memory(Memory::CreateProcessMemory(pid)); Unwinder unwinder(512, maps, regs, process_memory); VerifyUnwind(&unwinder, expected_function_names); } // This test assumes that this code is compiled with optimizations turned // off. If this doesn't happen, then all of the calls will be optimized // away. extern "C" void InnerFunction(TestTypeEnum test_type) { // Use a switch statement to force the compiler to create unwinding information // for each case. switch (test_type) { case TEST_TYPE_LOCAL_WAIT_FOR_FINISH: { g_waiters++; while (!g_finish.load()) { } break; } case TEST_TYPE_REMOTE: case TEST_TYPE_REMOTE_WITH_INVALID_CALL: { g_ready_for_remote = true; g_ready = true; if (test_type == TEST_TYPE_REMOTE_WITH_INVALID_CALL) { void (*crash_func)() = nullptr; crash_func(); } while (true) { } break; } default: { std::unique_ptr unwinder; std::unique_ptr regs(Regs::CreateFromLocal()); RegsGetLocal(regs.get()); std::unique_ptr maps; if (test_type == TEST_TYPE_LOCAL_UNWINDER) { maps.reset(new LocalMaps()); ASSERT_TRUE(maps->Parse()); auto process_memory(Memory::CreateProcessMemory(getpid())); unwinder.reset(new Unwinder(512, maps.get(), regs.get(), process_memory)); } else { UnwinderFromPid* unwinder_from_pid = new UnwinderFromPid(512, getpid()); unwinder_from_pid->SetRegs(regs.get()); unwinder.reset(unwinder_from_pid); } VerifyUnwind(unwinder.get(), kFunctionOrder); break; } } } extern "C" void MiddleFunction(TestTypeEnum test_type) { InnerFunction(test_type); } extern "C" void OuterFunction(TestTypeEnum test_type) { MiddleFunction(test_type); } class UnwindTest : public ::testing::Test { public: void SetUp() override { ResetGlobals(); } }; TEST_F(UnwindTest, local) { OuterFunction(TEST_TYPE_LOCAL_UNWINDER); } TEST_F(UnwindTest, local_use_from_pid) { OuterFunction(TEST_TYPE_LOCAL_UNWINDER_FROM_PID); } static void LocalUnwind(void* data) { TestTypeEnum* test_type = reinterpret_cast(data); OuterFunction(*test_type); } TEST_F(UnwindTest, local_check_for_leak) { TestTypeEnum test_type = TEST_TYPE_LOCAL_UNWINDER; TestCheckForLeaks(LocalUnwind, &test_type); } TEST_F(UnwindTest, local_use_from_pid_check_for_leak) { TestTypeEnum test_type = TEST_TYPE_LOCAL_UNWINDER_FROM_PID; TestCheckForLeaks(LocalUnwind, &test_type); } void WaitForRemote(pid_t pid, uint64_t addr, bool leave_attached, bool* completed) { *completed = false; // Need to sleep before attempting first ptrace. Without this, on the // host it becomes impossible to attach and ptrace sets errno to EPERM. usleep(1000); for (size_t i = 0; i < 1000; i++) { if (ptrace(PTRACE_ATTACH, pid, 0, 0) == 0) { ASSERT_TRUE(TestQuiescePid(pid)) << "Waiting for process to quiesce failed: " << strerror(errno); MemoryRemote memory(pid); // Read the remote value to see if we are ready. bool value; if (memory.ReadFully(addr, &value, sizeof(value)) && value) { *completed = true; } if (!*completed || !leave_attached) { ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0)); } if (*completed) { break; } } else { ASSERT_EQ(ESRCH, errno) << "ptrace attach failed with unexpected error: " << strerror(errno); } usleep(5000); } } TEST_F(UnwindTest, remote) { pid_t pid; if ((pid = fork()) == 0) { OuterFunction(TEST_TYPE_REMOTE); exit(0); } ASSERT_NE(-1, pid); TestScopedPidReaper reap(pid); bool completed; WaitForRemote(pid, reinterpret_cast(&g_ready_for_remote), true, &completed); ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready."; RemoteMaps maps(pid); ASSERT_TRUE(maps.Parse()); std::unique_ptr regs(Regs::RemoteGet(pid)); ASSERT_TRUE(regs.get() != nullptr); VerifyUnwind(pid, &maps, regs.get(), kFunctionOrder); ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0)) << "ptrace detach failed with unexpected error: " << strerror(errno); } TEST_F(UnwindTest, unwind_from_pid_remote) { pid_t pid; if ((pid = fork()) == 0) { OuterFunction(TEST_TYPE_REMOTE); exit(0); } ASSERT_NE(-1, pid); TestScopedPidReaper reap(pid); bool completed; WaitForRemote(pid, reinterpret_cast(&g_ready_for_remote), true, &completed); ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready."; std::unique_ptr regs(Regs::RemoteGet(pid)); ASSERT_TRUE(regs.get() != nullptr); UnwinderFromPid unwinder(512, pid); unwinder.SetRegs(regs.get()); VerifyUnwind(&unwinder, kFunctionOrder); // Verify that calling the same object works again. ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0)) << "ptrace detach failed with unexpected error: " << strerror(errno); } static void RemoteCheckForLeaks(void (*unwind_func)(void*)) { pid_t pid; if ((pid = fork()) == 0) { OuterFunction(TEST_TYPE_REMOTE); exit(0); } ASSERT_NE(-1, pid); TestScopedPidReaper reap(pid); bool completed; WaitForRemote(pid, reinterpret_cast(&g_ready_for_remote), true, &completed); ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready."; TestCheckForLeaks(unwind_func, &pid); ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0)) << "ptrace detach failed with unexpected error: " << strerror(errno); } static void RemoteUnwind(void* data) { pid_t* pid = reinterpret_cast(data); RemoteMaps maps(*pid); ASSERT_TRUE(maps.Parse()); std::unique_ptr regs(Regs::RemoteGet(*pid)); ASSERT_TRUE(regs.get() != nullptr); VerifyUnwind(*pid, &maps, regs.get(), kFunctionOrder); } TEST_F(UnwindTest, remote_check_for_leaks) { RemoteCheckForLeaks(RemoteUnwind); } static void RemoteUnwindFromPid(void* data) { pid_t* pid = reinterpret_cast(data); std::unique_ptr regs(Regs::RemoteGet(*pid)); ASSERT_TRUE(regs.get() != nullptr); UnwinderFromPid unwinder(512, *pid); unwinder.SetRegs(regs.get()); VerifyUnwind(&unwinder, kFunctionOrder); } TEST_F(UnwindTest, remote_unwind_for_pid_check_for_leaks) { RemoteCheckForLeaks(RemoteUnwindFromPid); } TEST_F(UnwindTest, from_context) { std::atomic_int tid(0); std::thread thread([&]() { tid = syscall(__NR_gettid); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); struct sigaction act, oldact; memset(&act, 0, sizeof(act)); act.sa_sigaction = SignalHandler; act.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK; ASSERT_EQ(0, sigaction(SIGUSR1, &act, &oldact)); // Wait for the tid to get set. for (size_t i = 0; i < 100; i++) { if (tid.load() != 0) { break; } usleep(1000); } ASSERT_NE(0, tid.load()); ASSERT_EQ(0, tgkill(getpid(), tid.load(), SIGUSR1)) << "Error: " << strerror(errno); // Wait for context data. void* ucontext; for (size_t i = 0; i < 2000; i++) { ucontext = reinterpret_cast(g_ucontext.load()); if (ucontext != nullptr) { break; } usleep(1000); } ASSERT_TRUE(ucontext != nullptr) << "Timed out waiting for thread to respond to signal."; LocalMaps maps; ASSERT_TRUE(maps.Parse()); std::unique_ptr regs(Regs::CreateFromUcontext(Regs::CurrentArch(), ucontext)); VerifyUnwind(getpid(), &maps, regs.get(), kFunctionOrder); ASSERT_EQ(0, sigaction(SIGUSR1, &oldact, nullptr)); g_finish = true; thread.join(); } static void RemoteThroughSignal(int signal, unsigned int sa_flags) { pid_t pid; if ((pid = fork()) == 0) { struct sigaction act, oldact; memset(&act, 0, sizeof(act)); act.sa_sigaction = SignalCallerHandler; act.sa_flags = SA_RESTART | SA_ONSTACK | sa_flags; ASSERT_EQ(0, sigaction(signal, &act, &oldact)); OuterFunction(signal != SIGSEGV ? TEST_TYPE_REMOTE : TEST_TYPE_REMOTE_WITH_INVALID_CALL); exit(0); } ASSERT_NE(-1, pid); TestScopedPidReaper reap(pid); bool completed; if (signal != SIGSEGV) { WaitForRemote(pid, reinterpret_cast(&g_ready_for_remote), false, &completed); ASSERT_TRUE(completed) << "Timed out waiting for remote process to be ready."; ASSERT_EQ(0, kill(pid, SIGUSR1)); } WaitForRemote(pid, reinterpret_cast(&g_signal_ready_for_remote), true, &completed); ASSERT_TRUE(completed) << "Timed out waiting for remote process to be in signal handler."; RemoteMaps maps(pid); ASSERT_TRUE(maps.Parse()); std::unique_ptr regs(Regs::RemoteGet(pid)); ASSERT_TRUE(regs.get() != nullptr); VerifyUnwind(pid, &maps, regs.get(), kFunctionSignalOrder); ASSERT_EQ(0, ptrace(PTRACE_DETACH, pid, 0, 0)) << "ptrace detach failed with unexpected error: " << strerror(errno); } TEST_F(UnwindTest, remote_through_signal) { RemoteThroughSignal(SIGUSR1, 0); } TEST_F(UnwindTest, remote_through_signal_sa_siginfo) { RemoteThroughSignal(SIGUSR1, SA_SIGINFO); } TEST_F(UnwindTest, remote_through_signal_with_invalid_func) { RemoteThroughSignal(SIGSEGV, 0); } TEST_F(UnwindTest, remote_through_signal_sa_siginfo_with_invalid_func) { RemoteThroughSignal(SIGSEGV, SA_SIGINFO); } // Verify that using the same map while unwinding multiple threads at the // same time doesn't cause problems. TEST_F(UnwindTest, multiple_threads_unwind_same_map) { static constexpr size_t kNumConcurrentThreads = 100; LocalMaps maps; ASSERT_TRUE(maps.Parse()); auto process_memory(Memory::CreateProcessMemory(getpid())); std::vector threads; std::atomic_bool wait; wait = true; size_t frames[kNumConcurrentThreads]; for (size_t i = 0; i < kNumConcurrentThreads; i++) { std::thread* thread = new std::thread([i, &frames, &maps, &process_memory, &wait]() { while (wait) ; std::unique_ptr regs(Regs::CreateFromLocal()); RegsGetLocal(regs.get()); Unwinder unwinder(512, &maps, regs.get(), process_memory); unwinder.Unwind(); frames[i] = unwinder.NumFrames(); ASSERT_LE(3U, frames[i]) << "Failed for thread " << i; }); threads.push_back(thread); } wait = false; for (auto thread : threads) { thread->join(); delete thread; } } TEST_F(UnwindTest, thread_unwind) { ResetGlobals(); std::atomic_int tid(0); std::thread thread([&tid]() { tid = android::base::GetThreadId(); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); while (tid.load() == 0) ; ThreadUnwinder unwinder(512); ASSERT_TRUE(unwinder.Init()); unwinder.UnwindWithSignal(SIGRTMIN, tid); VerifyUnwindFrames(&unwinder, kFunctionOrder); g_finish = true; thread.join(); } TEST_F(UnwindTest, thread_unwind_with_external_maps) { ResetGlobals(); std::atomic_int tid(0); std::thread thread([&tid]() { tid = android::base::GetThreadId(); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); while (tid.load() == 0) ; LocalMaps maps; ASSERT_TRUE(maps.Parse()); ThreadUnwinder unwinder(512, &maps); ASSERT_EQ(&maps, unwinder.GetMaps()); ASSERT_TRUE(unwinder.Init()); ASSERT_EQ(&maps, unwinder.GetMaps()); unwinder.UnwindWithSignal(SIGRTMIN, tid); VerifyUnwindFrames(&unwinder, kFunctionOrder); ASSERT_EQ(&maps, unwinder.GetMaps()); g_finish = true; thread.join(); } TEST_F(UnwindTest, thread_unwind_cur_pid) { ThreadUnwinder unwinder(512); ASSERT_TRUE(unwinder.Init()); unwinder.UnwindWithSignal(SIGRTMIN, getpid()); EXPECT_EQ(0U, unwinder.NumFrames()); EXPECT_EQ(ERROR_UNSUPPORTED, unwinder.LastErrorCode()); } static std::thread* CreateUnwindThread(std::atomic_int& tid, ThreadUnwinder& unwinder, std::atomic_bool& start_unwinding, std::atomic_int& unwinders) { return new std::thread([&tid, &unwinder, &start_unwinding, &unwinders]() { while (!start_unwinding.load()) ; ThreadUnwinder thread_unwinder(512, &unwinder); thread_unwinder.UnwindWithSignal(SIGRTMIN, tid); #if defined(__arm__) // On arm, there is a chance of winding up in case that doesn't unwind. // Identify that case and allow unwinding in that case. for (size_t i = 0; i < 10; i++) { auto frames = thread_unwinder.frames(); if (frames.size() > 1 && frames[frames.size() - 1].pc < 1000 && frames[frames.size() - 2].function_name == "InnerFunction") { thread_unwinder.UnwindWithSignal(SIGRTMIN, tid); } else { break; } } #endif VerifyUnwindFrames(&thread_unwinder, kFunctionOrder); ++unwinders; }); } TEST_F(UnwindTest, thread_unwind_same_thread_from_threads) { static constexpr size_t kNumThreads = 300; ResetGlobals(); std::atomic_int tid(0); std::thread thread([&tid]() { tid = android::base::GetThreadId(); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); while (g_waiters.load() != 1) ; ThreadUnwinder unwinder(512); ASSERT_TRUE(unwinder.Init()); std::atomic_bool start_unwinding(false); std::vector threads; std::atomic_int unwinders(0); for (size_t i = 0; i < kNumThreads; i++) { threads.push_back(CreateUnwindThread(tid, unwinder, start_unwinding, unwinders)); } start_unwinding = true; while (unwinders.load() != kNumThreads) ; for (auto* thread : threads) { thread->join(); delete thread; } g_finish = true; thread.join(); } TEST_F(UnwindTest, thread_unwind_multiple_thread_from_threads) { static constexpr size_t kNumThreads = 100; ResetGlobals(); std::atomic_int tids[kNumThreads] = {}; std::vector threads; for (size_t i = 0; i < kNumThreads; i++) { std::thread* thread = new std::thread([&tids, i]() { tids[i] = android::base::GetThreadId(); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); threads.push_back(thread); } while (g_waiters.load() != kNumThreads) ; ThreadUnwinder unwinder(512); ASSERT_TRUE(unwinder.Init()); std::atomic_bool start_unwinding(false); std::vector unwinder_threads; std::atomic_int unwinders(0); for (size_t i = 0; i < kNumThreads; i++) { unwinder_threads.push_back(CreateUnwindThread(tids[i], unwinder, start_unwinding, unwinders)); } start_unwinding = true; while (unwinders.load() != kNumThreads) ; for (auto* thread : unwinder_threads) { thread->join(); delete thread; } g_finish = true; for (auto* thread : threads) { thread->join(); delete thread; } } TEST_F(UnwindTest, thread_unwind_multiple_thread_from_threads_updatable_maps) { static constexpr size_t kNumThreads = 100; ResetGlobals(); // Do this before the threads are started so that the maps needed to // unwind are not created yet, and this verifies the dynamic nature // of the LocalUpdatableMaps object. LocalUpdatableMaps maps; ASSERT_TRUE(maps.Parse()); std::atomic_int tids[kNumThreads] = {}; std::vector threads; for (size_t i = 0; i < kNumThreads; i++) { std::thread* thread = new std::thread([&tids, i]() { tids[i] = android::base::GetThreadId(); OuterFunction(TEST_TYPE_LOCAL_WAIT_FOR_FINISH); }); threads.push_back(thread); } while (g_waiters.load() != kNumThreads) ; ThreadUnwinder unwinder(512, &maps); ASSERT_TRUE(unwinder.Init()); std::atomic_bool start_unwinding(false); std::vector unwinder_threads; std::atomic_int unwinders(0); for (size_t i = 0; i < kNumThreads; i++) { unwinder_threads.push_back(CreateUnwindThread(tids[i], unwinder, start_unwinding, unwinders)); } start_unwinding = true; while (unwinders.load() != kNumThreads) ; for (auto* thread : unwinder_threads) { thread->join(); delete thread; } g_finish = true; for (auto* thread : threads) { thread->join(); delete thread; } } } // namespace unwindstack