/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_DMA_MAPPING_H #define _LINUX_DMA_MAPPING_H #include #include #include #include #include #include #include #include /** * List of possible attributes associated with a DMA mapping. The semantics * of each attribute should be defined in Documentation/core-api/dma-attributes.rst. */ /* * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping * may be weakly ordered, that is that reads and writes may pass each other. */ #define DMA_ATTR_WEAK_ORDERING (1UL << 1) /* * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be * buffered to improve performance. */ #define DMA_ATTR_WRITE_COMBINE (1UL << 2) /* * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel * virtual mapping for the allocated buffer. */ #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) /* * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of * the CPU cache for the given buffer assuming that it has been already * transferred to 'device' domain. */ #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) /* * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer * in physical memory. */ #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) /* * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem * that it's probably not worth the time to try to allocate memory to in a way * that gives better TLB efficiency. */ #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) /* * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress * allocation failure reports (similarly to __GFP_NOWARN). */ #define DMA_ATTR_NO_WARN (1UL << 8) /* * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully * accessible at an elevated privilege level (and ideally inaccessible or * at least read-only at lesser-privileged levels). */ #define DMA_ATTR_PRIVILEGED (1UL << 9) /* * DMA_ATTR_SYS_CACHE_ONLY: used to indicate that the buffer should be mapped * with the correct memory attributes so that it can be cached in the system * or last level cache. This is useful for buffers that are being mapped for * devices that are non-coherent, but can use the system cache. */ #define DMA_ATTR_SYS_CACHE_ONLY (1UL << 10) /* * DMA_ATTR_SYS_CACHE_ONLY_NWA: used to indicate that the buffer should be * mapped with the correct memory attributes so that it can be cached in the * system or last level cache, with a no write allocate cache policy. This is * useful for buffers that are being mapped for devices that are non-coherent, * but can use the system cache. */ #define DMA_ATTR_SYS_CACHE_ONLY_NWA (1UL << 11) /* * A dma_addr_t can hold any valid DMA or bus address for the platform. It can * be given to a device to use as a DMA source or target. It is specific to a * given device and there may be a translation between the CPU physical address * space and the bus address space. * * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not * be used directly in drivers, but checked for using dma_mapping_error() * instead. */ #define DMA_MAPPING_ERROR (~(dma_addr_t)0) #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) #ifdef CONFIG_DMA_API_DEBUG void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr); void debug_dma_map_single(struct device *dev, const void *addr, unsigned long len); #else static inline void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { } static inline void debug_dma_map_single(struct device *dev, const void *addr, unsigned long len) { } #endif /* CONFIG_DMA_API_DEBUG */ #ifdef CONFIG_HAS_DMA static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { debug_dma_mapping_error(dev, dma_addr); if (dma_addr == DMA_MAPPING_ERROR) return -ENOMEM; return 0; } dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, size_t offset, size_t size, enum dma_data_direction dir, unsigned long attrs); void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs); int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs); dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs); void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs); void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir); void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir); void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir); void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir); void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs); void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs); void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle); int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs); bool dma_can_mmap(struct device *dev); int dma_supported(struct device *dev, u64 mask); int dma_set_mask(struct device *dev, u64 mask); int dma_set_coherent_mask(struct device *dev, u64 mask); u64 dma_get_required_mask(struct device *dev); size_t dma_max_mapping_size(struct device *dev); bool dma_need_sync(struct device *dev, dma_addr_t dma_addr); unsigned long dma_get_merge_boundary(struct device *dev); #else /* CONFIG_HAS_DMA */ static inline dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, size_t offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { return DMA_MAPPING_ERROR; } static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { } static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { return 0; } static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { } static inline dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { return DMA_MAPPING_ERROR; } static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { } static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { } static inline void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir) { } static inline void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { } static inline void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction dir) { } static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) { return -ENOMEM; } static inline void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { return NULL; } static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs) { } static inline void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { return NULL; } static inline void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { } static inline int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { return -ENXIO; } static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { return -ENXIO; } static inline bool dma_can_mmap(struct device *dev) { return false; } static inline int dma_supported(struct device *dev, u64 mask) { return 0; } static inline int dma_set_mask(struct device *dev, u64 mask) { return -EIO; } static inline int dma_set_coherent_mask(struct device *dev, u64 mask) { return -EIO; } static inline u64 dma_get_required_mask(struct device *dev) { return 0; } static inline size_t dma_max_mapping_size(struct device *dev) { return 0; } static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) { return false; } static inline unsigned long dma_get_merge_boundary(struct device *dev) { return 0; } #endif /* CONFIG_HAS_DMA */ struct page *dma_alloc_pages(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_free_pages(struct device *dev, size_t size, struct page *page, dma_addr_t dma_handle, enum dma_data_direction dir); void *dma_alloc_noncoherent(struct device *dev, size_t size, dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir); static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, size_t size, enum dma_data_direction dir, unsigned long attrs) { /* DMA must never operate on areas that might be remapped. */ if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), "rejecting DMA map of vmalloc memory\n")) return DMA_MAPPING_ERROR; debug_dma_map_single(dev, ptr, size); return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), size, dir, attrs); } static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { return dma_unmap_page_attrs(dev, addr, size, dir, attrs); } static inline void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { return dma_sync_single_for_cpu(dev, addr + offset, size, dir); } static inline void dma_sync_single_range_for_device(struct device *dev, dma_addr_t addr, unsigned long offset, size_t size, enum dma_data_direction dir) { return dma_sync_single_for_device(dev, addr + offset, size, dir); } /** * dma_map_sgtable - Map the given buffer for DMA * @dev: The device for which to perform the DMA operation * @sgt: The sg_table object describing the buffer * @dir: DMA direction * @attrs: Optional DMA attributes for the map operation * * Maps a buffer described by a scatterlist stored in the given sg_table * object for the @dir DMA operation by the @dev device. After success the * ownership for the buffer is transferred to the DMA domain. One has to * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the * ownership of the buffer back to the CPU domain before touching the * buffer by the CPU. * * Returns 0 on success or -EINVAL on error during mapping the buffer. */ static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir, unsigned long attrs) { int nents; nents = dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); if (nents <= 0) return -EINVAL; sgt->nents = nents; return 0; } /** * dma_unmap_sgtable - Unmap the given buffer for DMA * @dev: The device for which to perform the DMA operation * @sgt: The sg_table object describing the buffer * @dir: DMA direction * @attrs: Optional DMA attributes for the unmap operation * * Unmaps a buffer described by a scatterlist stored in the given sg_table * object for the @dir DMA operation by the @dev device. After this function * the ownership of the buffer is transferred back to the CPU domain. */ static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir, unsigned long attrs) { dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); } /** * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access * @dev: The device for which to perform the DMA operation * @sgt: The sg_table object describing the buffer * @dir: DMA direction * * Performs the needed cache synchronization and moves the ownership of the * buffer back to the CPU domain, so it is safe to perform any access to it * by the CPU. Before doing any further DMA operations, one has to transfer * the ownership of the buffer back to the DMA domain by calling the * dma_sync_sgtable_for_device(). */ static inline void dma_sync_sgtable_for_cpu(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir) { dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir); } /** * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA * @dev: The device for which to perform the DMA operation * @sgt: The sg_table object describing the buffer * @dir: DMA direction * * Performs the needed cache synchronization and moves the ownership of the * buffer back to the DMA domain, so it is safe to perform the DMA operation. * Once finished, one has to call dma_sync_sgtable_for_cpu() or * dma_unmap_sgtable(). */ static inline void dma_sync_sgtable_for_device(struct device *dev, struct sg_table *sgt, enum dma_data_direction dir) { dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir); } #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) static inline void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { return dma_alloc_attrs(dev, size, dma_handle, gfp, (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); } static inline void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); } static inline u64 dma_get_mask(struct device *dev) { if (dev->dma_mask && *dev->dma_mask) return *dev->dma_mask; return DMA_BIT_MASK(32); } /* * Set both the DMA mask and the coherent DMA mask to the same thing. * Note that we don't check the return value from dma_set_coherent_mask() * as the DMA API guarantees that the coherent DMA mask can be set to * the same or smaller than the streaming DMA mask. */ static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) { int rc = dma_set_mask(dev, mask); if (rc == 0) dma_set_coherent_mask(dev, mask); return rc; } /* * Similar to the above, except it deals with the case where the device * does not have dev->dma_mask appropriately setup. */ static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) { dev->dma_mask = &dev->coherent_dma_mask; return dma_set_mask_and_coherent(dev, mask); } /** * dma_addressing_limited - return if the device is addressing limited * @dev: device to check * * Return %true if the devices DMA mask is too small to address all memory in * the system, else %false. Lack of addressing bits is the prime reason for * bounce buffering, but might not be the only one. */ static inline bool dma_addressing_limited(struct device *dev) { return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < dma_get_required_mask(dev); } static inline unsigned int dma_get_max_seg_size(struct device *dev) { if (dev->dma_parms && dev->dma_parms->max_segment_size) return dev->dma_parms->max_segment_size; return SZ_64K; } static inline int dma_set_max_seg_size(struct device *dev, unsigned int size) { if (dev->dma_parms) { dev->dma_parms->max_segment_size = size; return 0; } return -EIO; } static inline unsigned long dma_get_seg_boundary(struct device *dev) { if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) return dev->dma_parms->segment_boundary_mask; return ULONG_MAX; } /** * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units * @dev: device to guery the boundary for * @page_shift: ilog() of the IOMMU page size * * Return the segment boundary in IOMMU page units (which may be different from * the CPU page size) for the passed in device. * * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for * non-DMA API callers. */ static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, unsigned int page_shift) { if (!dev) return (U32_MAX >> page_shift) + 1; return (dma_get_seg_boundary(dev) >> page_shift) + 1; } static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) { if (dev->dma_parms) { dev->dma_parms->segment_boundary_mask = mask; return 0; } return -EIO; } static inline unsigned int dma_get_min_align_mask(struct device *dev) { if (dev->dma_parms) return dev->dma_parms->min_align_mask; return 0; } static inline int dma_set_min_align_mask(struct device *dev, unsigned int min_align_mask) { if (WARN_ON_ONCE(!dev->dma_parms)) return -EIO; dev->dma_parms->min_align_mask = min_align_mask; return 0; } static inline int dma_get_cache_alignment(void) { #ifdef ARCH_DMA_MINALIGN return ARCH_DMA_MINALIGN; #endif return 1; } static inline void *dmam_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { return dmam_alloc_attrs(dev, size, dma_handle, gfp, (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); } static inline void *dma_alloc_wc(struct device *dev, size_t size, dma_addr_t *dma_addr, gfp_t gfp) { unsigned long attrs = DMA_ATTR_WRITE_COMBINE; if (gfp & __GFP_NOWARN) attrs |= DMA_ATTR_NO_WARN; return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); } static inline void dma_free_wc(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr) { return dma_free_attrs(dev, size, cpu_addr, dma_addr, DMA_ATTR_WRITE_COMBINE); } static inline int dma_mmap_wc(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size) { return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, DMA_ATTR_WRITE_COMBINE); } #ifdef CONFIG_NEED_DMA_MAP_STATE #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) #else #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) #define dma_unmap_addr(PTR, ADDR_NAME) (0) #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) #define dma_unmap_len(PTR, LEN_NAME) (0) #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) #endif /* * Legacy interface to set up the dma offset map. Drivers really should not * actually use it, but we have a few legacy cases left. */ int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, dma_addr_t dma_start, u64 size); extern const struct dma_map_ops dma_virt_ops; #endif /* _LINUX_DMA_MAPPING_H */