/* * Copyright (C) 2008 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Private C library headers. #include "linker.h" #include "linker_block_allocator.h" #include "linker_cfi.h" #include "linker_config.h" #include "linker_gdb_support.h" #include "linker_globals.h" #include "linker_debug.h" #include "linker_dlwarning.h" #include "linker_main.h" #include "linker_namespaces.h" #include "linker_sleb128.h" #include "linker_phdr.h" #include "linker_relocate.h" #include "linker_tls.h" #include "linker_translate_path.h" #include "linker_utils.h" #include "private/bionic_call_ifunc_resolver.h" #include "private/bionic_globals.h" #include "android-base/macros.h" #include "android-base/strings.h" #include "android-base/stringprintf.h" #include "ziparchive/zip_archive.h" static std::unordered_map g_dso_handle_counters; static bool g_anonymous_namespace_set = false; static android_namespace_t* g_anonymous_namespace = &g_default_namespace; static std::unordered_map g_exported_namespaces; static LinkerTypeAllocator g_soinfo_allocator; static LinkerTypeAllocator> g_soinfo_links_allocator; static LinkerTypeAllocator g_namespace_allocator; static LinkerTypeAllocator> g_namespace_list_allocator; static uint64_t g_module_load_counter = 0; static uint64_t g_module_unload_counter = 0; static const char* const kLdConfigArchFilePath = "/system/etc/ld.config." ABI_STRING ".txt"; static const char* const kLdConfigFilePath = "/system/etc/ld.config.txt"; static const char* const kLdConfigVndkLiteFilePath = "/system/etc/ld.config.vndk_lite.txt"; static const char* const kLdGeneratedConfigFilePath = "/linkerconfig/ld.config.txt"; #if defined(__LP64__) static const char* const kSystemLibDir = "/system/lib64"; static const char* const kOdmLibDir = "/odm/lib64"; static const char* const kVendorLibDir = "/vendor/lib64"; static const char* const kAsanSystemLibDir = "/data/asan/system/lib64"; static const char* const kAsanOdmLibDir = "/data/asan/odm/lib64"; static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib64"; #else static const char* const kSystemLibDir = "/system/lib"; static const char* const kOdmLibDir = "/odm/lib"; static const char* const kVendorLibDir = "/vendor/lib"; static const char* const kAsanSystemLibDir = "/data/asan/system/lib"; static const char* const kAsanOdmLibDir = "/data/asan/odm/lib"; static const char* const kAsanVendorLibDir = "/data/asan/vendor/lib"; #endif static const char* const kAsanLibDirPrefix = "/data/asan"; static const char* const kDefaultLdPaths[] = { kSystemLibDir, kOdmLibDir, kVendorLibDir, nullptr }; static const char* const kAsanDefaultLdPaths[] = { kAsanSystemLibDir, kSystemLibDir, kAsanOdmLibDir, kOdmLibDir, kAsanVendorLibDir, kVendorLibDir, nullptr }; // Is ASAN enabled? static bool g_is_asan = false; static CFIShadowWriter g_cfi_shadow; CFIShadowWriter* get_cfi_shadow() { return &g_cfi_shadow; } static bool is_system_library(const std::string& realpath) { for (const auto& dir : g_default_namespace.get_default_library_paths()) { if (file_is_in_dir(realpath, dir)) { return true; } } return false; } // Checks if the file exists and not a directory. static bool file_exists(const char* path) { struct stat s; if (stat(path, &s) != 0) { return false; } return S_ISREG(s.st_mode); } static std::string resolve_soname(const std::string& name) { // We assume that soname equals to basename here // TODO(dimitry): consider having honest absolute-path -> soname resolution // note that since we might end up refusing to load this library because // it is not in shared libs list we need to get the soname without actually loading // the library. // // On the other hand there are several places where we already assume that // soname == basename in particular for any not-loaded library mentioned // in DT_NEEDED list. return basename(name.c_str()); } static bool maybe_accessible_via_namespace_links(android_namespace_t* ns, const char* name) { std::string soname = resolve_soname(name); for (auto& ns_link : ns->linked_namespaces()) { if (ns_link.is_accessible(soname.c_str())) { return true; } } return false; } // TODO(dimitry): The exempt-list is a workaround for http://b/26394120 --- // gradually remove libraries from this list until it is gone. static bool is_exempt_lib(android_namespace_t* ns, const char* name, const soinfo* needed_by) { static const char* const kLibraryExemptList[] = { "libandroid_runtime.so", "libbinder.so", "libcrypto.so", "libcutils.so", "libexpat.so", "libgui.so", "libmedia.so", "libnativehelper.so", "libssl.so", "libstagefright.so", "libsqlite.so", "libui.so", "libutils.so", nullptr }; // If you're targeting N, you don't get the exempt-list. if (get_application_target_sdk_version() >= 24) { return false; } // if the library needed by a system library - implicitly assume it // is exempt unless it is in the list of shared libraries for one or // more linked namespaces if (needed_by != nullptr && is_system_library(needed_by->get_realpath())) { return !maybe_accessible_via_namespace_links(ns, name); } // if this is an absolute path - make sure it points to /system/lib(64) if (name[0] == '/' && dirname(name) == kSystemLibDir) { // and reduce the path to basename name = basename(name); } for (size_t i = 0; kLibraryExemptList[i] != nullptr; ++i) { if (strcmp(name, kLibraryExemptList[i]) == 0) { return true; } } return false; } // END OF WORKAROUND static std::vector g_ld_preload_names; static void notify_gdb_of_load(soinfo* info) { if (info->is_linker() || info->is_main_executable()) { // gdb already knows about the linker and the main executable. return; } link_map* map = &(info->link_map_head); map->l_addr = info->load_bias; // link_map l_name field is not const. map->l_name = const_cast(info->get_realpath()); map->l_ld = info->dynamic; CHECK(map->l_name != nullptr); CHECK(map->l_name[0] != '\0'); notify_gdb_of_load(map); } static void notify_gdb_of_unload(soinfo* info) { notify_gdb_of_unload(&(info->link_map_head)); } LinkedListEntry* SoinfoListAllocator::alloc() { return g_soinfo_links_allocator.alloc(); } void SoinfoListAllocator::free(LinkedListEntry* entry) { g_soinfo_links_allocator.free(entry); } LinkedListEntry* NamespaceListAllocator::alloc() { return g_namespace_list_allocator.alloc(); } void NamespaceListAllocator::free(LinkedListEntry* entry) { g_namespace_list_allocator.free(entry); } soinfo* soinfo_alloc(android_namespace_t* ns, const char* name, const struct stat* file_stat, off64_t file_offset, uint32_t rtld_flags) { if (strlen(name) >= PATH_MAX) { async_safe_fatal("library name \"%s\" too long", name); } TRACE("name %s: allocating soinfo for ns=%p", name, ns); soinfo* si = new (g_soinfo_allocator.alloc()) soinfo(ns, name, file_stat, file_offset, rtld_flags); solist_add_soinfo(si); si->generate_handle(); ns->add_soinfo(si); TRACE("name %s: allocated soinfo @ %p", name, si); return si; } static void soinfo_free(soinfo* si) { if (si == nullptr) { return; } if (si->base != 0 && si->size != 0) { if (!si->is_mapped_by_caller()) { munmap(reinterpret_cast(si->base), si->size); } else { // remap the region as PROT_NONE, MAP_ANONYMOUS | MAP_NORESERVE mmap(reinterpret_cast(si->base), si->size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); } } if (si->has_min_version(6) && si->get_gap_size()) { munmap(reinterpret_cast(si->get_gap_start()), si->get_gap_size()); } TRACE("name %s: freeing soinfo @ %p", si->get_realpath(), si); if (!solist_remove_soinfo(si)) { async_safe_fatal("soinfo=%p is not in soinfo_list (double unload?)", si); } // clear links to/from si si->remove_all_links(); si->~soinfo(); g_soinfo_allocator.free(si); } static void parse_path(const char* path, const char* delimiters, std::vector* resolved_paths) { std::vector paths; split_path(path, delimiters, &paths); resolve_paths(paths, resolved_paths); } static void parse_LD_LIBRARY_PATH(const char* path) { std::vector ld_libary_paths; parse_path(path, ":", &ld_libary_paths); g_default_namespace.set_ld_library_paths(std::move(ld_libary_paths)); } static bool realpath_fd(int fd, std::string* realpath) { // proc_self_fd needs to be large enough to hold "/proc/self/fd/" plus an // integer, plus the NULL terminator. char proc_self_fd[32]; // We want to statically allocate this large buffer so that we don't grow // the stack by too much. static char buf[PATH_MAX]; async_safe_format_buffer(proc_self_fd, sizeof(proc_self_fd), "/proc/self/fd/%d", fd); auto length = readlink(proc_self_fd, buf, sizeof(buf)); if (length == -1) { if (!is_first_stage_init()) { PRINT("readlink(\"%s\") failed: %s [fd=%d]", proc_self_fd, strerror(errno), fd); } return false; } realpath->assign(buf, length); return true; } // Returns the address of the current thread's copy of a TLS module. If the current thread doesn't // have a copy yet, allocate one on-demand if should_alloc is true, and return nullptr otherwise. static inline void* get_tls_block_for_this_thread(const soinfo_tls* si_tls, bool should_alloc) { const TlsModule& tls_mod = get_tls_module(si_tls->module_id); if (tls_mod.static_offset != SIZE_MAX) { const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout; char* static_tls = reinterpret_cast(__get_bionic_tcb()) - layout.offset_bionic_tcb(); return static_tls + tls_mod.static_offset; } else if (should_alloc) { const TlsIndex ti { si_tls->module_id, 0 }; return TLS_GET_ADDR(&ti); } else { TlsDtv* dtv = __get_tcb_dtv(__get_bionic_tcb()); if (dtv->generation < tls_mod.first_generation) return nullptr; return dtv->modules[__tls_module_id_to_idx(si_tls->module_id)]; } } #if defined(__arm__) // For a given PC, find the .so that it belongs to. // Returns the base address of the .ARM.exidx section // for that .so, and the number of 8-byte entries // in that section (via *pcount). // // Intended to be called by libc's __gnu_Unwind_Find_exidx(). _Unwind_Ptr do_dl_unwind_find_exidx(_Unwind_Ptr pc, int* pcount) { if (soinfo* si = find_containing_library(reinterpret_cast(pc))) { *pcount = si->ARM_exidx_count; return reinterpret_cast<_Unwind_Ptr>(si->ARM_exidx); } *pcount = 0; return 0; } #endif // Here, we only have to provide a callback to iterate across all the // loaded libraries. gcc_eh does the rest. int do_dl_iterate_phdr(int (*cb)(dl_phdr_info* info, size_t size, void* data), void* data) { int rv = 0; for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) { dl_phdr_info dl_info; dl_info.dlpi_addr = si->link_map_head.l_addr; dl_info.dlpi_name = si->link_map_head.l_name; dl_info.dlpi_phdr = si->phdr; dl_info.dlpi_phnum = si->phnum; dl_info.dlpi_adds = g_module_load_counter; dl_info.dlpi_subs = g_module_unload_counter; if (soinfo_tls* tls_module = si->get_tls()) { dl_info.dlpi_tls_modid = tls_module->module_id; dl_info.dlpi_tls_data = get_tls_block_for_this_thread(tls_module, /*should_alloc=*/false); } else { dl_info.dlpi_tls_modid = 0; dl_info.dlpi_tls_data = nullptr; } rv = cb(&dl_info, sizeof(dl_phdr_info), data); if (rv != 0) { break; } } return rv; } ProtectedDataGuard::ProtectedDataGuard() { if (ref_count_++ == 0) { protect_data(PROT_READ | PROT_WRITE); } if (ref_count_ == 0) { // overflow async_safe_fatal("Too many nested calls to dlopen()"); } } ProtectedDataGuard::~ProtectedDataGuard() { if (--ref_count_ == 0) { protect_data(PROT_READ); } } void ProtectedDataGuard::protect_data(int protection) { g_soinfo_allocator.protect_all(protection); g_soinfo_links_allocator.protect_all(protection); g_namespace_allocator.protect_all(protection); g_namespace_list_allocator.protect_all(protection); } size_t ProtectedDataGuard::ref_count_ = 0; // Each size has it's own allocator. template class SizeBasedAllocator { public: static void* alloc() { return allocator_.alloc(); } static void free(void* ptr) { allocator_.free(ptr); } static void purge() { allocator_.purge(); } private: static LinkerBlockAllocator allocator_; }; template LinkerBlockAllocator SizeBasedAllocator::allocator_(size); template class TypeBasedAllocator { public: static T* alloc() { return reinterpret_cast(SizeBasedAllocator::alloc()); } static void free(T* ptr) { SizeBasedAllocator::free(ptr); } static void purge() { SizeBasedAllocator::purge(); } }; class LoadTask { public: struct deleter_t { void operator()(LoadTask* t) { t->~LoadTask(); TypeBasedAllocator::free(t); } }; static deleter_t deleter; // needed_by is NULL iff dlopen is called from memory that isn't part of any known soinfo. static LoadTask* create(const char* _Nonnull name, soinfo* _Nullable needed_by, android_namespace_t* _Nonnull start_from, std::unordered_map* _Nonnull readers_map) { LoadTask* ptr = TypeBasedAllocator::alloc(); return new (ptr) LoadTask(name, needed_by, start_from, readers_map); } const char* get_name() const { return name_; } soinfo* get_needed_by() const { return needed_by_; } soinfo* get_soinfo() const { return si_; } void set_soinfo(soinfo* si) { si_ = si; } off64_t get_file_offset() const { return file_offset_; } void set_file_offset(off64_t offset) { file_offset_ = offset; } int get_fd() const { return fd_; } void set_fd(int fd, bool assume_ownership) { if (fd_ != -1 && close_fd_) { close(fd_); } fd_ = fd; close_fd_ = assume_ownership; } const android_dlextinfo* get_extinfo() const { return extinfo_; } void set_extinfo(const android_dlextinfo* extinfo) { extinfo_ = extinfo; } bool is_dt_needed() const { return is_dt_needed_; } void set_dt_needed(bool is_dt_needed) { is_dt_needed_ = is_dt_needed; } // returns the namespace from where we need to start loading this. const android_namespace_t* get_start_from() const { return start_from_; } void remove_cached_elf_reader() { CHECK(si_ != nullptr); (*elf_readers_map_).erase(si_); } const ElfReader& get_elf_reader() const { CHECK(si_ != nullptr); return (*elf_readers_map_)[si_]; } ElfReader& get_elf_reader() { CHECK(si_ != nullptr); return (*elf_readers_map_)[si_]; } std::unordered_map* get_readers_map() { return elf_readers_map_; } bool read(const char* realpath, off64_t file_size) { ElfReader& elf_reader = get_elf_reader(); return elf_reader.Read(realpath, fd_, file_offset_, file_size); } bool load(address_space_params* address_space) { ElfReader& elf_reader = get_elf_reader(); if (!elf_reader.Load(address_space)) { return false; } si_->base = elf_reader.load_start(); si_->size = elf_reader.load_size(); si_->set_mapped_by_caller(elf_reader.is_mapped_by_caller()); si_->load_bias = elf_reader.load_bias(); si_->phnum = elf_reader.phdr_count(); si_->phdr = elf_reader.loaded_phdr(); si_->set_gap_start(elf_reader.gap_start()); si_->set_gap_size(elf_reader.gap_size()); return true; } private: LoadTask(const char* name, soinfo* needed_by, android_namespace_t* start_from, std::unordered_map* readers_map) : name_(name), needed_by_(needed_by), si_(nullptr), fd_(-1), close_fd_(false), file_offset_(0), elf_readers_map_(readers_map), is_dt_needed_(false), start_from_(start_from) {} ~LoadTask() { if (fd_ != -1 && close_fd_) { close(fd_); } } const char* name_; soinfo* needed_by_; soinfo* si_; const android_dlextinfo* extinfo_; int fd_; bool close_fd_; off64_t file_offset_; std::unordered_map* elf_readers_map_; // TODO(dimitry): needed by workaround for http://b/26394120 (the exempt-list) bool is_dt_needed_; // END OF WORKAROUND const android_namespace_t* const start_from_; DISALLOW_IMPLICIT_CONSTRUCTORS(LoadTask); }; LoadTask::deleter_t LoadTask::deleter; template using linked_list_t = LinkedList>>; typedef linked_list_t SoinfoLinkedList; typedef linked_list_t StringLinkedList; typedef std::vector LoadTaskList; enum walk_action_result_t : uint32_t { kWalkStop = 0, kWalkContinue = 1, kWalkSkip = 2 }; // This function walks down the tree of soinfo dependencies // in breadth-first order and // * calls action(soinfo* si) for each node, and // * terminates walk if action returns kWalkStop // * skips children of the node if action // return kWalkSkip // // walk_dependencies_tree returns false if walk was terminated // by the action and true otherwise. template static bool walk_dependencies_tree(soinfo* root_soinfo, F action) { SoinfoLinkedList visit_list; SoinfoLinkedList visited; visit_list.push_back(root_soinfo); soinfo* si; while ((si = visit_list.pop_front()) != nullptr) { if (visited.contains(si)) { continue; } walk_action_result_t result = action(si); if (result == kWalkStop) { return false; } visited.push_back(si); if (result != kWalkSkip) { si->get_children().for_each([&](soinfo* child) { visit_list.push_back(child); }); } } return true; } static const ElfW(Sym)* dlsym_handle_lookup_impl(android_namespace_t* ns, soinfo* root, soinfo* skip_until, soinfo** found, SymbolName& symbol_name, const version_info* vi) { const ElfW(Sym)* result = nullptr; bool skip_lookup = skip_until != nullptr; walk_dependencies_tree(root, [&](soinfo* current_soinfo) { if (skip_lookup) { skip_lookup = current_soinfo != skip_until; return kWalkContinue; } if (!ns->is_accessible(current_soinfo)) { return kWalkSkip; } result = current_soinfo->find_symbol_by_name(symbol_name, vi); if (result != nullptr) { *found = current_soinfo; return kWalkStop; } return kWalkContinue; }); return result; } /* This is used by dlsym(3) to performs a global symbol lookup. If the start value is null (for RTLD_DEFAULT), the search starts at the beginning of the global solist. Otherwise the search starts at the specified soinfo (for RTLD_NEXT). */ static const ElfW(Sym)* dlsym_linear_lookup(android_namespace_t* ns, const char* name, const version_info* vi, soinfo** found, soinfo* caller, void* handle) { SymbolName symbol_name(name); auto& soinfo_list = ns->soinfo_list(); auto start = soinfo_list.begin(); if (handle == RTLD_NEXT) { if (caller == nullptr) { return nullptr; } else { auto it = soinfo_list.find(caller); CHECK (it != soinfo_list.end()); start = ++it; } } const ElfW(Sym)* s = nullptr; for (auto it = start, end = soinfo_list.end(); it != end; ++it) { soinfo* si = *it; // Do not skip RTLD_LOCAL libraries in dlsym(RTLD_DEFAULT, ...) // if the library is opened by application with target api level < M. // See http://b/21565766 if ((si->get_rtld_flags() & RTLD_GLOBAL) == 0 && si->get_target_sdk_version() >= 23) { continue; } s = si->find_symbol_by_name(symbol_name, vi); if (s != nullptr) { *found = si; break; } } // If not found - use dlsym_handle_lookup_impl for caller's local_group if (s == nullptr && caller != nullptr) { soinfo* local_group_root = caller->get_local_group_root(); return dlsym_handle_lookup_impl(local_group_root->get_primary_namespace(), local_group_root, (handle == RTLD_NEXT) ? caller : nullptr, found, symbol_name, vi); } if (s != nullptr) { TRACE_TYPE(LOOKUP, "%s s->st_value = %p, found->base = %p", name, reinterpret_cast(s->st_value), reinterpret_cast((*found)->base)); } return s; } // This is used by dlsym(3). It performs symbol lookup only within the // specified soinfo object and its dependencies in breadth first order. static const ElfW(Sym)* dlsym_handle_lookup(soinfo* si, soinfo** found, const char* name, const version_info* vi) { // According to man dlopen(3) and posix docs in the case when si is handle // of the main executable we need to search not only in the executable and its // dependencies but also in all libraries loaded with RTLD_GLOBAL. // // Since RTLD_GLOBAL is always set for the main executable and all dt_needed shared // libraries and they are loaded in breath-first (correct) order we can just execute // dlsym(RTLD_DEFAULT, ...); instead of doing two stage lookup. if (si == solist_get_somain()) { return dlsym_linear_lookup(&g_default_namespace, name, vi, found, nullptr, RTLD_DEFAULT); } SymbolName symbol_name(name); // note that the namespace is not the namespace associated with caller_addr // we use ns associated with root si intentionally here. Using caller_ns // causes problems when user uses dlopen_ext to open a library in the separate // namespace and then calls dlsym() on the handle. return dlsym_handle_lookup_impl(si->get_primary_namespace(), si, nullptr, found, symbol_name, vi); } soinfo* find_containing_library(const void* p) { // Addresses within a library may be tagged if they point to globals. Untag // them so that the bounds check succeeds. ElfW(Addr) address = reinterpret_cast(untag_address(p)); for (soinfo* si = solist_get_head(); si != nullptr; si = si->next) { if (address < si->base || address - si->base >= si->size) { continue; } ElfW(Addr) vaddr = address - si->load_bias; for (size_t i = 0; i != si->phnum; ++i) { const ElfW(Phdr)* phdr = &si->phdr[i]; if (phdr->p_type != PT_LOAD) { continue; } if (vaddr >= phdr->p_vaddr && vaddr < phdr->p_vaddr + phdr->p_memsz) { return si; } } } return nullptr; } class ZipArchiveCache { public: ZipArchiveCache() {} ~ZipArchiveCache(); bool get_or_open(const char* zip_path, ZipArchiveHandle* handle); private: DISALLOW_COPY_AND_ASSIGN(ZipArchiveCache); std::unordered_map cache_; }; bool ZipArchiveCache::get_or_open(const char* zip_path, ZipArchiveHandle* handle) { std::string key(zip_path); auto it = cache_.find(key); if (it != cache_.end()) { *handle = it->second; return true; } int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC)); if (fd == -1) { return false; } if (OpenArchiveFd(fd, "", handle) != 0) { // invalid zip-file (?) CloseArchive(*handle); return false; } cache_[key] = *handle; return true; } ZipArchiveCache::~ZipArchiveCache() { for (const auto& it : cache_) { CloseArchive(it.second); } } static int open_library_in_zipfile(ZipArchiveCache* zip_archive_cache, const char* const input_path, off64_t* file_offset, std::string* realpath) { std::string normalized_path; if (!normalize_path(input_path, &normalized_path)) { return -1; } const char* const path = normalized_path.c_str(); TRACE("Trying zip file open from path \"%s\" -> normalized \"%s\"", input_path, path); // Treat an '!/' separator inside a path as the separator between the name // of the zip file on disk and the subdirectory to search within it. // For example, if path is "foo.zip!/bar/bas/x.so", then we search for // "bar/bas/x.so" within "foo.zip". const char* const separator = strstr(path, kZipFileSeparator); if (separator == nullptr) { return -1; } char buf[512]; if (strlcpy(buf, path, sizeof(buf)) >= sizeof(buf)) { PRINT("Warning: ignoring very long library path: %s", path); return -1; } buf[separator - path] = '\0'; const char* zip_path = buf; const char* file_path = &buf[separator - path + 2]; int fd = TEMP_FAILURE_RETRY(open(zip_path, O_RDONLY | O_CLOEXEC)); if (fd == -1) { return -1; } ZipArchiveHandle handle; if (!zip_archive_cache->get_or_open(zip_path, &handle)) { // invalid zip-file (?) close(fd); return -1; } ZipEntry entry; if (FindEntry(handle, file_path, &entry) != 0) { // Entry was not found. close(fd); return -1; } // Check if it is properly stored if (entry.method != kCompressStored || (entry.offset % PAGE_SIZE) != 0) { close(fd); return -1; } *file_offset = entry.offset; if (realpath_fd(fd, realpath)) { *realpath += separator; } else { if (!is_first_stage_init()) { PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.", normalized_path.c_str()); } *realpath = normalized_path; } return fd; } static bool format_path(char* buf, size_t buf_size, const char* path, const char* name) { int n = async_safe_format_buffer(buf, buf_size, "%s/%s", path, name); if (n < 0 || n >= static_cast(buf_size)) { PRINT("Warning: ignoring very long library path: %s/%s", path, name); return false; } return true; } static int open_library_at_path(ZipArchiveCache* zip_archive_cache, const char* path, off64_t* file_offset, std::string* realpath) { int fd = -1; if (strstr(path, kZipFileSeparator) != nullptr) { fd = open_library_in_zipfile(zip_archive_cache, path, file_offset, realpath); } if (fd == -1) { fd = TEMP_FAILURE_RETRY(open(path, O_RDONLY | O_CLOEXEC)); if (fd != -1) { *file_offset = 0; if (!realpath_fd(fd, realpath)) { if (!is_first_stage_init()) { PRINT("warning: unable to get realpath for the library \"%s\". Will use given path.", path); } *realpath = path; } } } return fd; } static int open_library_on_paths(ZipArchiveCache* zip_archive_cache, const char* name, off64_t* file_offset, const std::vector& paths, std::string* realpath) { for (const auto& path : paths) { char buf[512]; if (!format_path(buf, sizeof(buf), path.c_str(), name)) { continue; } int fd = open_library_at_path(zip_archive_cache, buf, file_offset, realpath); if (fd != -1) { return fd; } } return -1; } static int open_library(android_namespace_t* ns, ZipArchiveCache* zip_archive_cache, const char* name, soinfo *needed_by, off64_t* file_offset, std::string* realpath) { TRACE("[ opening %s from namespace %s ]", name, ns->get_name()); // If the name contains a slash, we should attempt to open it directly and not search the paths. if (strchr(name, '/') != nullptr) { return open_library_at_path(zip_archive_cache, name, file_offset, realpath); } // LD_LIBRARY_PATH has the highest priority. We don't have to check accessibility when searching // the namespace's path lists, because anything found on a namespace path list should always be // accessible. int fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_ld_library_paths(), realpath); // Try the DT_RUNPATH, and verify that the library is accessible. if (fd == -1 && needed_by != nullptr) { fd = open_library_on_paths(zip_archive_cache, name, file_offset, needed_by->get_dt_runpath(), realpath); if (fd != -1 && !ns->is_accessible(*realpath)) { close(fd); fd = -1; } } // Finally search the namespace's main search path list. if (fd == -1) { fd = open_library_on_paths(zip_archive_cache, name, file_offset, ns->get_default_library_paths(), realpath); } return fd; } int open_executable(const char* path, off64_t* file_offset, std::string* realpath) { ZipArchiveCache zip_archive_cache; return open_library_at_path(&zip_archive_cache, path, file_offset, realpath); } const char* fix_dt_needed(const char* dt_needed, const char* sopath __unused) { #if !defined(__LP64__) // Work around incorrect DT_NEEDED entries for old apps: http://b/21364029 int app_target_api_level = get_application_target_sdk_version(); if (app_target_api_level < 23) { const char* bname = basename(dt_needed); if (bname != dt_needed) { DL_WARN_documented_change(23, "invalid-dt_needed-entries-enforced-for-api-level-23", "library \"%s\" has invalid DT_NEEDED entry \"%s\"", sopath, dt_needed, app_target_api_level); add_dlwarning(sopath, "invalid DT_NEEDED entry", dt_needed); } return bname; } #endif return dt_needed; } template static void for_each_dt_needed(const ElfReader& elf_reader, F action) { for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_NEEDED) { action(fix_dt_needed(elf_reader.get_string(d->d_un.d_val), elf_reader.name())); } } } static bool find_loaded_library_by_inode(android_namespace_t* ns, const struct stat& file_stat, off64_t file_offset, bool search_linked_namespaces, soinfo** candidate) { if (file_stat.st_dev == 0 || file_stat.st_ino == 0) { *candidate = nullptr; return false; } auto predicate = [&](soinfo* si) { return si->get_st_ino() == file_stat.st_ino && si->get_st_dev() == file_stat.st_dev && si->get_file_offset() == file_offset; }; *candidate = ns->soinfo_list().find_if(predicate); if (*candidate == nullptr && search_linked_namespaces) { for (auto& link : ns->linked_namespaces()) { android_namespace_t* linked_ns = link.linked_namespace(); soinfo* si = linked_ns->soinfo_list().find_if(predicate); if (si != nullptr && link.is_accessible(si->get_soname())) { *candidate = si; return true; } } } return *candidate != nullptr; } static bool find_loaded_library_by_realpath(android_namespace_t* ns, const char* realpath, bool search_linked_namespaces, soinfo** candidate) { auto predicate = [&](soinfo* si) { return strcmp(realpath, si->get_realpath()) == 0; }; *candidate = ns->soinfo_list().find_if(predicate); if (*candidate == nullptr && search_linked_namespaces) { for (auto& link : ns->linked_namespaces()) { android_namespace_t* linked_ns = link.linked_namespace(); soinfo* si = linked_ns->soinfo_list().find_if(predicate); if (si != nullptr && link.is_accessible(si->get_soname())) { *candidate = si; return true; } } } return *candidate != nullptr; } static bool load_library(android_namespace_t* ns, LoadTask* task, LoadTaskList* load_tasks, int rtld_flags, const std::string& realpath, bool search_linked_namespaces) { off64_t file_offset = task->get_file_offset(); const char* name = task->get_name(); const android_dlextinfo* extinfo = task->get_extinfo(); LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s, flags=0x%x, realpath=%s, search_linked_namespaces=%d)", ns->get_name(), name, rtld_flags, realpath.c_str(), search_linked_namespaces); if ((file_offset % PAGE_SIZE) != 0) { DL_OPEN_ERR("file offset for the library \"%s\" is not page-aligned: %" PRId64, name, file_offset); return false; } if (file_offset < 0) { DL_OPEN_ERR("file offset for the library \"%s\" is negative: %" PRId64, name, file_offset); return false; } struct stat file_stat; if (TEMP_FAILURE_RETRY(fstat(task->get_fd(), &file_stat)) != 0) { DL_OPEN_ERR("unable to stat file for the library \"%s\": %s", name, strerror(errno)); return false; } if (file_offset >= file_stat.st_size) { DL_OPEN_ERR("file offset for the library \"%s\" >= file size: %" PRId64 " >= %" PRId64, name, file_offset, file_stat.st_size); return false; } // Check for symlink and other situations where // file can have different names, unless ANDROID_DLEXT_FORCE_LOAD is set if (extinfo == nullptr || (extinfo->flags & ANDROID_DLEXT_FORCE_LOAD) == 0) { soinfo* si = nullptr; if (find_loaded_library_by_inode(ns, file_stat, file_offset, search_linked_namespaces, &si)) { LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s): Already loaded under different name/path \"%s\" - " "will return existing soinfo", ns->get_name(), name, si->get_realpath()); task->set_soinfo(si); return true; } } if ((rtld_flags & RTLD_NOLOAD) != 0) { DL_OPEN_ERR("library \"%s\" wasn't loaded and RTLD_NOLOAD prevented it", name); return false; } struct statfs fs_stat; if (TEMP_FAILURE_RETRY(fstatfs(task->get_fd(), &fs_stat)) != 0) { DL_OPEN_ERR("unable to fstatfs file for the library \"%s\": %s", name, strerror(errno)); return false; } // do not check accessibility using realpath if fd is located on tmpfs // this enables use of memfd_create() for apps if ((fs_stat.f_type != TMPFS_MAGIC) && (!ns->is_accessible(realpath))) { // TODO(dimitry): workaround for http://b/26394120 - the exempt-list // TODO(dimitry) before O release: add a namespace attribute to have this enabled // only for classloader-namespaces const soinfo* needed_by = task->is_dt_needed() ? task->get_needed_by() : nullptr; if (is_exempt_lib(ns, name, needed_by)) { // print warning only if needed by non-system library if (needed_by == nullptr || !is_system_library(needed_by->get_realpath())) { const soinfo* needed_or_dlopened_by = task->get_needed_by(); const char* sopath = needed_or_dlopened_by == nullptr ? "(unknown)" : needed_or_dlopened_by->get_realpath(); DL_WARN_documented_change(24, "private-api-enforced-for-api-level-24", "library \"%s\" (\"%s\") needed or dlopened by \"%s\" " "is not accessible by namespace \"%s\"", name, realpath.c_str(), sopath, ns->get_name()); add_dlwarning(sopath, "unauthorized access to", name); } } else { // do not load libraries if they are not accessible for the specified namespace. const char* needed_or_dlopened_by = task->get_needed_by() == nullptr ? "(unknown)" : task->get_needed_by()->get_realpath(); DL_OPEN_ERR("library \"%s\" needed or dlopened by \"%s\" is not accessible for the namespace \"%s\"", name, needed_or_dlopened_by, ns->get_name()); // do not print this if a library is in the list of shared libraries for linked namespaces if (!maybe_accessible_via_namespace_links(ns, name)) { PRINT("library \"%s\" (\"%s\") needed or dlopened by \"%s\" is not accessible for the" " namespace: [name=\"%s\", ld_library_paths=\"%s\", default_library_paths=\"%s\"," " permitted_paths=\"%s\"]", name, realpath.c_str(), needed_or_dlopened_by, ns->get_name(), android::base::Join(ns->get_ld_library_paths(), ':').c_str(), android::base::Join(ns->get_default_library_paths(), ':').c_str(), android::base::Join(ns->get_permitted_paths(), ':').c_str()); } return false; } } soinfo* si = soinfo_alloc(ns, realpath.c_str(), &file_stat, file_offset, rtld_flags); task->set_soinfo(si); // Read the ELF header and some of the segments. if (!task->read(realpath.c_str(), file_stat.st_size)) { task->remove_cached_elf_reader(); task->set_soinfo(nullptr); soinfo_free(si); return false; } // Find and set DT_RUNPATH, DT_SONAME, and DT_FLAGS_1. // Note that these field values are temporary and are // going to be overwritten on soinfo::prelink_image // with values from PT_LOAD segments. const ElfReader& elf_reader = task->get_elf_reader(); for (const ElfW(Dyn)* d = elf_reader.dynamic(); d->d_tag != DT_NULL; ++d) { if (d->d_tag == DT_RUNPATH) { si->set_dt_runpath(elf_reader.get_string(d->d_un.d_val)); } if (d->d_tag == DT_SONAME) { si->set_soname(elf_reader.get_string(d->d_un.d_val)); } // We need to identify a DF_1_GLOBAL library early so we can link it to namespaces. if (d->d_tag == DT_FLAGS_1) { si->set_dt_flags_1(d->d_un.d_val); } } #if !defined(__ANDROID__) // Bionic on the host currently uses some Android prebuilts, which don't set // DT_RUNPATH with any relative paths, so they can't find their dependencies. // b/118058804 if (si->get_dt_runpath().empty()) { si->set_dt_runpath("$ORIGIN/../lib64:$ORIGIN/lib64"); } #endif for_each_dt_needed(task->get_elf_reader(), [&](const char* name) { LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s): Adding DT_NEEDED task: %s", ns->get_name(), task->get_name(), name); load_tasks->push_back(LoadTask::create(name, si, ns, task->get_readers_map())); }); return true; } static bool load_library(android_namespace_t* ns, LoadTask* task, ZipArchiveCache* zip_archive_cache, LoadTaskList* load_tasks, int rtld_flags, bool search_linked_namespaces) { const char* name = task->get_name(); soinfo* needed_by = task->get_needed_by(); const android_dlextinfo* extinfo = task->get_extinfo(); if (extinfo != nullptr && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) != 0) { off64_t file_offset = 0; if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { file_offset = extinfo->library_fd_offset; } std::string realpath; if (!realpath_fd(extinfo->library_fd, &realpath)) { if (!is_first_stage_init()) { PRINT( "warning: unable to get realpath for the library \"%s\" by extinfo->library_fd. " "Will use given name.", name); } realpath = name; } task->set_fd(extinfo->library_fd, false); task->set_file_offset(file_offset); return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces); } LD_LOG(kLogDlopen, "load_library(ns=%s, task=%s, flags=0x%x, search_linked_namespaces=%d): calling " "open_library", ns->get_name(), name, rtld_flags, search_linked_namespaces); // Open the file. off64_t file_offset; std::string realpath; int fd = open_library(ns, zip_archive_cache, name, needed_by, &file_offset, &realpath); if (fd == -1) { if (task->is_dt_needed()) { if (needed_by->is_main_executable()) { DL_OPEN_ERR("library \"%s\" not found: needed by main executable", name); } else { DL_OPEN_ERR("library \"%s\" not found: needed by %s in namespace %s", name, needed_by->get_realpath(), task->get_start_from()->get_name()); } } else { DL_OPEN_ERR("library \"%s\" not found", name); } return false; } task->set_fd(fd, true); task->set_file_offset(file_offset); return load_library(ns, task, load_tasks, rtld_flags, realpath, search_linked_namespaces); } static bool find_loaded_library_by_soname(android_namespace_t* ns, const char* name, soinfo** candidate) { return !ns->soinfo_list().visit([&](soinfo* si) { if (strcmp(name, si->get_soname()) == 0) { *candidate = si; return false; } return true; }); } // Returns true if library was found and false otherwise static bool find_loaded_library_by_soname(android_namespace_t* ns, const char* name, bool search_linked_namespaces, soinfo** candidate) { *candidate = nullptr; // Ignore filename with path. if (strchr(name, '/') != nullptr) { return false; } bool found = find_loaded_library_by_soname(ns, name, candidate); if (!found && search_linked_namespaces) { // if a library was not found - look into linked namespaces for (auto& link : ns->linked_namespaces()) { if (!link.is_accessible(name)) { continue; } android_namespace_t* linked_ns = link.linked_namespace(); if (find_loaded_library_by_soname(linked_ns, name, candidate)) { return true; } } } return found; } static bool find_library_in_linked_namespace(const android_namespace_link_t& namespace_link, LoadTask* task) { android_namespace_t* ns = namespace_link.linked_namespace(); soinfo* candidate; bool loaded = false; std::string soname; if (find_loaded_library_by_soname(ns, task->get_name(), false, &candidate)) { loaded = true; soname = candidate->get_soname(); } else { soname = resolve_soname(task->get_name()); } if (!namespace_link.is_accessible(soname.c_str())) { // the library is not accessible via namespace_link LD_LOG(kLogDlopen, "find_library_in_linked_namespace(ns=%s, task=%s): Not accessible (soname=%s)", ns->get_name(), task->get_name(), soname.c_str()); return false; } // if library is already loaded - return it if (loaded) { LD_LOG(kLogDlopen, "find_library_in_linked_namespace(ns=%s, task=%s): Already loaded", ns->get_name(), task->get_name()); task->set_soinfo(candidate); return true; } // returning true with empty soinfo means that the library is okay to be // loaded in the namespace but has not yet been loaded there before. LD_LOG(kLogDlopen, "find_library_in_linked_namespace(ns=%s, task=%s): Ok to load", ns->get_name(), task->get_name()); task->set_soinfo(nullptr); return true; } static bool find_library_internal(android_namespace_t* ns, LoadTask* task, ZipArchiveCache* zip_archive_cache, LoadTaskList* load_tasks, int rtld_flags) { soinfo* candidate; if (find_loaded_library_by_soname(ns, task->get_name(), true /* search_linked_namespaces */, &candidate)) { LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Already loaded (by soname): %s", ns->get_name(), task->get_name(), candidate->get_realpath()); task->set_soinfo(candidate); return true; } // Library might still be loaded, the accurate detection // of this fact is done by load_library. TRACE("[ \"%s\" find_loaded_library_by_soname failed (*candidate=%s@%p). Trying harder... ]", task->get_name(), candidate == nullptr ? "n/a" : candidate->get_realpath(), candidate); if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags, true /* search_linked_namespaces */)) { return true; } // TODO(dimitry): workaround for http://b/26394120 (the exempt-list) if (ns->is_exempt_list_enabled() && is_exempt_lib(ns, task->get_name(), task->get_needed_by())) { // For the libs in the exempt-list, switch to the default namespace and then // try the load again from there. The library could be loaded from the // default namespace or from another namespace (e.g. runtime) that is linked // from the default namespace. LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Exempt system library - trying namespace %s", ns->get_name(), task->get_name(), g_default_namespace.get_name()); ns = &g_default_namespace; if (load_library(ns, task, zip_archive_cache, load_tasks, rtld_flags, true /* search_linked_namespaces */)) { return true; } } // END OF WORKAROUND // if a library was not found - look into linked namespaces // preserve current dlerror in the case it fails. DlErrorRestorer dlerror_restorer; LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Trying %zu linked namespaces", ns->get_name(), task->get_name(), ns->linked_namespaces().size()); for (auto& linked_namespace : ns->linked_namespaces()) { if (find_library_in_linked_namespace(linked_namespace, task)) { // Library is already loaded. if (task->get_soinfo() != nullptr) { // n.b. This code path runs when find_library_in_linked_namespace found an already-loaded // library by soname. That should only be possible with a exempt-list lookup, where we // switch the namespace, because otherwise, find_library_in_linked_namespace is duplicating // the soname scan done in this function's first call to find_loaded_library_by_soname. return true; } if (load_library(linked_namespace.linked_namespace(), task, zip_archive_cache, load_tasks, rtld_flags, false /* search_linked_namespaces */)) { LD_LOG(kLogDlopen, "find_library_internal(ns=%s, task=%s): Found in linked namespace %s", ns->get_name(), task->get_name(), linked_namespace.linked_namespace()->get_name()); return true; } } } return false; } static void soinfo_unload(soinfo* si); static void shuffle(std::vector* v) { if (is_first_stage_init()) { // arc4random* is not available in first stage init because /dev/random // hasn't yet been created. return; } for (size_t i = 0, size = v->size(); i < size; ++i) { size_t n = size - i; size_t r = arc4random_uniform(n); std::swap((*v)[n-1], (*v)[r]); } } // add_as_children - add first-level loaded libraries (i.e. library_names[], but // not their transitive dependencies) as children of the start_with library. // This is false when find_libraries is called for dlopen(), when newly loaded // libraries must form a disjoint tree. bool find_libraries(android_namespace_t* ns, soinfo* start_with, const char* const library_names[], size_t library_names_count, soinfo* soinfos[], std::vector* ld_preloads, size_t ld_preloads_count, int rtld_flags, const android_dlextinfo* extinfo, bool add_as_children, std::vector* namespaces) { // Step 0: prepare. std::unordered_map readers_map; LoadTaskList load_tasks; for (size_t i = 0; i < library_names_count; ++i) { const char* name = library_names[i]; load_tasks.push_back(LoadTask::create(name, start_with, ns, &readers_map)); } // If soinfos array is null allocate one on stack. // The array is needed in case of failure; for example // when library_names[] = {libone.so, libtwo.so} and libone.so // is loaded correctly but libtwo.so failed for some reason. // In this case libone.so should be unloaded on return. // See also implementation of failure_guard below. if (soinfos == nullptr) { size_t soinfos_size = sizeof(soinfo*)*library_names_count; soinfos = reinterpret_cast(alloca(soinfos_size)); memset(soinfos, 0, soinfos_size); } // list of libraries to link - see step 2. size_t soinfos_count = 0; auto scope_guard = android::base::make_scope_guard([&]() { for (LoadTask* t : load_tasks) { LoadTask::deleter(t); } }); ZipArchiveCache zip_archive_cache; soinfo_list_t new_global_group_members; // Step 1: expand the list of load_tasks to include // all DT_NEEDED libraries (do not load them just yet) for (size_t i = 0; iget_needed_by(); bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children); task->set_extinfo(is_dt_needed ? nullptr : extinfo); task->set_dt_needed(is_dt_needed); LD_LOG(kLogDlopen, "find_libraries(ns=%s): task=%s, is_dt_needed=%d", ns->get_name(), task->get_name(), is_dt_needed); // Note: start from the namespace that is stored in the LoadTask. This namespace // is different from the current namespace when the LoadTask is for a transitive // dependency and the lib that created the LoadTask is not found in the // current namespace but in one of the linked namespace. if (!find_library_internal(const_cast(task->get_start_from()), task, &zip_archive_cache, &load_tasks, rtld_flags)) { return false; } soinfo* si = task->get_soinfo(); if (is_dt_needed) { needed_by->add_child(si); } // When ld_preloads is not null, the first // ld_preloads_count libs are in fact ld_preloads. bool is_ld_preload = false; if (ld_preloads != nullptr && soinfos_count < ld_preloads_count) { ld_preloads->push_back(si); is_ld_preload = true; } if (soinfos_count < library_names_count) { soinfos[soinfos_count++] = si; } // Add the new global group members to all initial namespaces. Do this secondary namespace setup // at the same time that libraries are added to their primary namespace so that the order of // global group members is the same in the every namespace. Only add a library to a namespace // once, even if it appears multiple times in the dependency graph. if (is_ld_preload || (si->get_dt_flags_1() & DF_1_GLOBAL) != 0) { if (!si->is_linked() && namespaces != nullptr && !new_global_group_members.contains(si)) { new_global_group_members.push_back(si); for (auto linked_ns : *namespaces) { if (si->get_primary_namespace() != linked_ns) { linked_ns->add_soinfo(si); si->add_secondary_namespace(linked_ns); } } } } } // Step 2: Load libraries in random order (see b/24047022) LoadTaskList load_list; for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); auto pred = [&](const LoadTask* t) { return t->get_soinfo() == si; }; if (!si->is_linked() && std::find_if(load_list.begin(), load_list.end(), pred) == load_list.end() ) { load_list.push_back(task); } } bool reserved_address_recursive = false; if (extinfo) { reserved_address_recursive = extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_RECURSIVE; } if (!reserved_address_recursive) { // Shuffle the load order in the normal case, but not if we are loading all // the libraries to a reserved address range. shuffle(&load_list); } // Set up address space parameters. address_space_params extinfo_params, default_params; size_t relro_fd_offset = 0; if (extinfo) { if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) { extinfo_params.start_addr = extinfo->reserved_addr; extinfo_params.reserved_size = extinfo->reserved_size; extinfo_params.must_use_address = true; } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) { extinfo_params.start_addr = extinfo->reserved_addr; extinfo_params.reserved_size = extinfo->reserved_size; } } for (auto&& task : load_list) { address_space_params* address_space = (reserved_address_recursive || !task->is_dt_needed()) ? &extinfo_params : &default_params; if (!task->load(address_space)) { return false; } } // Step 3: pre-link all DT_NEEDED libraries in breadth first order. for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); if (!si->is_linked() && !si->prelink_image()) { return false; } register_soinfo_tls(si); } // Step 4: Construct the global group. DF_1_GLOBAL bit is force set for LD_PRELOADed libs because // they must be added to the global group. Note: The DF_1_GLOBAL bit for a library is normally set // in step 3. if (ld_preloads != nullptr) { for (auto&& si : *ld_preloads) { si->set_dt_flags_1(si->get_dt_flags_1() | DF_1_GLOBAL); } } // Step 5: Collect roots of local_groups. // Whenever needed_by->si link crosses a namespace boundary it forms its own local_group. // Here we collect new roots to link them separately later on. Note that we need to avoid // collecting duplicates. Also the order is important. They need to be linked in the same // BFS order we link individual libraries. std::vector local_group_roots; if (start_with != nullptr && add_as_children) { local_group_roots.push_back(start_with); } else { CHECK(soinfos_count == 1); local_group_roots.push_back(soinfos[0]); } for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); soinfo* needed_by = task->get_needed_by(); bool is_dt_needed = needed_by != nullptr && (needed_by != start_with || add_as_children); android_namespace_t* needed_by_ns = is_dt_needed ? needed_by->get_primary_namespace() : ns; if (!si->is_linked() && si->get_primary_namespace() != needed_by_ns) { auto it = std::find(local_group_roots.begin(), local_group_roots.end(), si); LD_LOG(kLogDlopen, "Crossing namespace boundary (si=%s@%p, si_ns=%s@%p, needed_by=%s@%p, ns=%s@%p, needed_by_ns=%s@%p) adding to local_group_roots: %s", si->get_realpath(), si, si->get_primary_namespace()->get_name(), si->get_primary_namespace(), needed_by == nullptr ? "(nullptr)" : needed_by->get_realpath(), needed_by, ns->get_name(), ns, needed_by_ns->get_name(), needed_by_ns, it == local_group_roots.end() ? "yes" : "no"); if (it == local_group_roots.end()) { local_group_roots.push_back(si); } } } // Step 6: Link all local groups for (auto root : local_group_roots) { soinfo_list_t local_group; android_namespace_t* local_group_ns = root->get_primary_namespace(); walk_dependencies_tree(root, [&] (soinfo* si) { if (local_group_ns->is_accessible(si)) { local_group.push_back(si); return kWalkContinue; } else { return kWalkSkip; } }); soinfo_list_t global_group = local_group_ns->get_global_group(); SymbolLookupList lookup_list(global_group, local_group); soinfo* local_group_root = local_group.front(); bool linked = local_group.visit([&](soinfo* si) { // Even though local group may contain accessible soinfos from other namespaces // we should avoid linking them (because if they are not linked -> they // are in the local_group_roots and will be linked later). if (!si->is_linked() && si->get_primary_namespace() == local_group_ns) { const android_dlextinfo* link_extinfo = nullptr; if (si == soinfos[0] || reserved_address_recursive) { // Only forward extinfo for the first library unless the recursive // flag is set. link_extinfo = extinfo; } if (__libc_shared_globals()->load_hook) { __libc_shared_globals()->load_hook(si->load_bias, si->phdr, si->phnum); } lookup_list.set_dt_symbolic_lib(si->has_DT_SYMBOLIC ? si : nullptr); if (!si->link_image(lookup_list, local_group_root, link_extinfo, &relro_fd_offset) || !get_cfi_shadow()->AfterLoad(si, solist_get_head())) { return false; } } return true; }); if (!linked) { return false; } } // Step 7: Mark all load_tasks as linked and increment refcounts // for references between load_groups (at this point it does not matter if // referenced load_groups were loaded by previous dlopen or as part of this // one on step 6) if (start_with != nullptr && add_as_children) { start_with->set_linked(); } for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); si->set_linked(); } for (auto&& task : load_tasks) { soinfo* si = task->get_soinfo(); soinfo* needed_by = task->get_needed_by(); if (needed_by != nullptr && needed_by != start_with && needed_by->get_local_group_root() != si->get_local_group_root()) { si->increment_ref_count(); } } return true; } static soinfo* find_library(android_namespace_t* ns, const char* name, int rtld_flags, const android_dlextinfo* extinfo, soinfo* needed_by) { soinfo* si = nullptr; if (name == nullptr) { si = solist_get_somain(); } else if (!find_libraries(ns, needed_by, &name, 1, &si, nullptr, 0, rtld_flags, extinfo, false /* add_as_children */)) { if (si != nullptr) { soinfo_unload(si); } return nullptr; } si->increment_ref_count(); return si; } static void soinfo_unload_impl(soinfo* root) { ScopedTrace trace((std::string("unload ") + root->get_realpath()).c_str()); bool is_linked = root->is_linked(); if (!root->can_unload()) { LD_LOG(kLogDlopen, "... dlclose(root=\"%s\"@%p) ... not unloading - the load group is flagged with NODELETE", root->get_realpath(), root); return; } soinfo_list_t unload_list; unload_list.push_back(root); soinfo_list_t local_unload_list; soinfo_list_t external_unload_list; soinfo* si = nullptr; while ((si = unload_list.pop_front()) != nullptr) { if (local_unload_list.contains(si)) { continue; } local_unload_list.push_back(si); if (si->has_min_version(0)) { soinfo* child = nullptr; while ((child = si->get_children().pop_front()) != nullptr) { TRACE("%s@%p needs to unload %s@%p", si->get_realpath(), si, child->get_realpath(), child); child->get_parents().remove(si); if (local_unload_list.contains(child)) { continue; } else if (child->is_linked() && child->get_local_group_root() != root) { external_unload_list.push_back(child); } else if (child->get_parents().empty()) { unload_list.push_back(child); } } } else { async_safe_fatal("soinfo for \"%s\"@%p has no version", si->get_realpath(), si); } } local_unload_list.for_each([](soinfo* si) { LD_LOG(kLogDlopen, "... dlclose: calling destructors for \"%s\"@%p ... ", si->get_realpath(), si); si->call_destructors(); LD_LOG(kLogDlopen, "... dlclose: calling destructors for \"%s\"@%p ... done", si->get_realpath(), si); }); while ((si = local_unload_list.pop_front()) != nullptr) { LD_LOG(kLogDlopen, "... dlclose: unloading \"%s\"@%p ...", si->get_realpath(), si); ++g_module_unload_counter; notify_gdb_of_unload(si); unregister_soinfo_tls(si); if (__libc_shared_globals()->unload_hook) { __libc_shared_globals()->unload_hook(si->load_bias, si->phdr, si->phnum); } get_cfi_shadow()->BeforeUnload(si); soinfo_free(si); } if (is_linked) { while ((si = external_unload_list.pop_front()) != nullptr) { LD_LOG(kLogDlopen, "... dlclose: unloading external reference \"%s\"@%p ...", si->get_realpath(), si); soinfo_unload(si); } } else { LD_LOG(kLogDlopen, "... dlclose: unload_si was not linked - not unloading external references ..."); } } static void soinfo_unload(soinfo* unload_si) { // Note that the library can be loaded but not linked; // in which case there is no root but we still need // to walk the tree and unload soinfos involved. // // This happens on unsuccessful dlopen, when one of // the DT_NEEDED libraries could not be linked/found. bool is_linked = unload_si->is_linked(); soinfo* root = is_linked ? unload_si->get_local_group_root() : unload_si; LD_LOG(kLogDlopen, "... dlclose(realpath=\"%s\"@%p) ... load group root is \"%s\"@%p", unload_si->get_realpath(), unload_si, root->get_realpath(), root); size_t ref_count = is_linked ? root->decrement_ref_count() : 0; if (ref_count > 0) { LD_LOG(kLogDlopen, "... dlclose(root=\"%s\"@%p) ... not unloading - decrementing ref_count to %zd", root->get_realpath(), root, ref_count); return; } soinfo_unload_impl(root); } void increment_dso_handle_reference_counter(void* dso_handle) { if (dso_handle == nullptr) { return; } auto it = g_dso_handle_counters.find(dso_handle); if (it != g_dso_handle_counters.end()) { CHECK(++it->second != 0); } else { soinfo* si = find_containing_library(dso_handle); if (si != nullptr) { ProtectedDataGuard guard; si->increment_ref_count(); } else { async_safe_fatal( "increment_dso_handle_reference_counter: Couldn't find soinfo by dso_handle=%p", dso_handle); } g_dso_handle_counters[dso_handle] = 1U; } } void decrement_dso_handle_reference_counter(void* dso_handle) { if (dso_handle == nullptr) { return; } auto it = g_dso_handle_counters.find(dso_handle); CHECK(it != g_dso_handle_counters.end()); CHECK(it->second != 0); if (--it->second == 0) { soinfo* si = find_containing_library(dso_handle); if (si != nullptr) { ProtectedDataGuard guard; soinfo_unload(si); } else { async_safe_fatal( "decrement_dso_handle_reference_counter: Couldn't find soinfo by dso_handle=%p", dso_handle); } g_dso_handle_counters.erase(it); } } static std::string symbol_display_name(const char* sym_name, const char* sym_ver) { if (sym_ver == nullptr) { return sym_name; } return std::string(sym_name) + ", version " + sym_ver; } static android_namespace_t* get_caller_namespace(soinfo* caller) { return caller != nullptr ? caller->get_primary_namespace() : g_anonymous_namespace; } void do_android_get_LD_LIBRARY_PATH(char* buffer, size_t buffer_size) { // Use basic string manipulation calls to avoid snprintf. // snprintf indirectly calls pthread_getspecific to get the size of a buffer. // When debug malloc is enabled, this call returns 0. This in turn causes // snprintf to do nothing, which causes libraries to fail to load. // See b/17302493 for further details. // Once the above bug is fixed, this code can be modified to use // snprintf again. const auto& default_ld_paths = g_default_namespace.get_default_library_paths(); size_t required_size = 0; for (const auto& path : default_ld_paths) { required_size += path.size() + 1; } if (buffer_size < required_size) { async_safe_fatal("android_get_LD_LIBRARY_PATH failed, buffer too small: " "buffer len %zu, required len %zu", buffer_size, required_size); } char* end = buffer; for (size_t i = 0; i < default_ld_paths.size(); ++i) { if (i > 0) *end++ = ':'; end = stpcpy(end, default_ld_paths[i].c_str()); } } void do_android_update_LD_LIBRARY_PATH(const char* ld_library_path) { parse_LD_LIBRARY_PATH(ld_library_path); } static std::string android_dlextinfo_to_string(const android_dlextinfo* info) { if (info == nullptr) { return "(null)"; } return android::base::StringPrintf("[flags=0x%" PRIx64 "," " reserved_addr=%p," " reserved_size=0x%zx," " relro_fd=%d," " library_fd=%d," " library_fd_offset=0x%" PRIx64 "," " library_namespace=%s@%p]", info->flags, info->reserved_addr, info->reserved_size, info->relro_fd, info->library_fd, info->library_fd_offset, (info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ? (info->library_namespace != nullptr ? info->library_namespace->get_name() : "(null)") : "(n/a)", (info->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0 ? info->library_namespace : nullptr); } void* do_dlopen(const char* name, int flags, const android_dlextinfo* extinfo, const void* caller_addr) { std::string trace_prefix = std::string("dlopen: ") + (name == nullptr ? "(nullptr)" : name); ScopedTrace trace(trace_prefix.c_str()); ScopedTrace loading_trace((trace_prefix + " - loading and linking").c_str()); soinfo* const caller = find_containing_library(caller_addr); android_namespace_t* ns = get_caller_namespace(caller); LD_LOG(kLogDlopen, "dlopen(name=\"%s\", flags=0x%x, extinfo=%s, caller=\"%s\", caller_ns=%s@%p, targetSdkVersion=%i) ...", name, flags, android_dlextinfo_to_string(extinfo).c_str(), caller == nullptr ? "(null)" : caller->get_realpath(), ns == nullptr ? "(null)" : ns->get_name(), ns, get_application_target_sdk_version()); auto purge_guard = android::base::make_scope_guard([&]() { purge_unused_memory(); }); auto failure_guard = android::base::make_scope_guard( [&]() { LD_LOG(kLogDlopen, "... dlopen failed: %s", linker_get_error_buffer()); }); if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL|RTLD_NODELETE|RTLD_NOLOAD)) != 0) { DL_OPEN_ERR("invalid flags to dlopen: %x", flags); return nullptr; } if (extinfo != nullptr) { if ((extinfo->flags & ~(ANDROID_DLEXT_VALID_FLAG_BITS)) != 0) { DL_OPEN_ERR("invalid extended flags to android_dlopen_ext: 0x%" PRIx64, extinfo->flags); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD) == 0 && (extinfo->flags & ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET) != 0) { DL_OPEN_ERR("invalid extended flag combination (ANDROID_DLEXT_USE_LIBRARY_FD_OFFSET without " "ANDROID_DLEXT_USE_LIBRARY_FD): 0x%" PRIx64, extinfo->flags); return nullptr; } if ((extinfo->flags & ANDROID_DLEXT_USE_NAMESPACE) != 0) { if (extinfo->library_namespace == nullptr) { DL_OPEN_ERR("ANDROID_DLEXT_USE_NAMESPACE is set but extinfo->library_namespace is null"); return nullptr; } ns = extinfo->library_namespace; } } // Workaround for dlopen(/system/lib/) when .so is in /apex. http://b/121248172 // The workaround works only when targetSdkVersion < Q. std::string name_to_apex; if (translateSystemPathToApexPath(name, &name_to_apex)) { const char* new_name = name_to_apex.c_str(); LD_LOG(kLogDlopen, "dlopen considering translation from %s to APEX path %s", name, new_name); // Some APEXs could be optionally disabled. Only translate the path // when the old file is absent and the new file exists. // TODO(b/124218500): Re-enable it once app compat issue is resolved /* if (file_exists(name)) { LD_LOG(kLogDlopen, "dlopen %s exists, not translating", name); } else */ if (!file_exists(new_name)) { LD_LOG(kLogDlopen, "dlopen %s does not exist, not translating", new_name); } else { LD_LOG(kLogDlopen, "dlopen translation accepted: using %s", new_name); name = new_name; } } // End Workaround for dlopen(/system/lib/) when .so is in /apex. std::string asan_name_holder; const char* translated_name = name; if (g_is_asan && translated_name != nullptr && translated_name[0] == '/') { char original_path[PATH_MAX]; if (realpath(name, original_path) != nullptr) { asan_name_holder = std::string(kAsanLibDirPrefix) + original_path; if (file_exists(asan_name_holder.c_str())) { soinfo* si = nullptr; if (find_loaded_library_by_realpath(ns, original_path, true, &si)) { PRINT("linker_asan dlopen NOT translating \"%s\" -> \"%s\": library already loaded", name, asan_name_holder.c_str()); } else { PRINT("linker_asan dlopen translating \"%s\" -> \"%s\"", name, translated_name); translated_name = asan_name_holder.c_str(); } } } } ProtectedDataGuard guard; soinfo* si = find_library(ns, translated_name, flags, extinfo, caller); loading_trace.End(); if (si != nullptr) { void* handle = si->to_handle(); LD_LOG(kLogDlopen, "... dlopen calling constructors: realpath=\"%s\", soname=\"%s\", handle=%p", si->get_realpath(), si->get_soname(), handle); si->call_constructors(); failure_guard.Disable(); LD_LOG(kLogDlopen, "... dlopen successful: realpath=\"%s\", soname=\"%s\", handle=%p", si->get_realpath(), si->get_soname(), handle); return handle; } return nullptr; } int do_dladdr(const void* addr, Dl_info* info) { // Determine if this address can be found in any library currently mapped. soinfo* si = find_containing_library(addr); if (si == nullptr) { return 0; } memset(info, 0, sizeof(Dl_info)); info->dli_fname = si->get_realpath(); // Address at which the shared object is loaded. info->dli_fbase = reinterpret_cast(si->base); // Determine if any symbol in the library contains the specified address. ElfW(Sym)* sym = si->find_symbol_by_address(addr); if (sym != nullptr) { info->dli_sname = si->get_string(sym->st_name); info->dli_saddr = reinterpret_cast(si->resolve_symbol_address(sym)); } return 1; } static soinfo* soinfo_from_handle(void* handle) { if ((reinterpret_cast(handle) & 1) != 0) { auto it = g_soinfo_handles_map.find(reinterpret_cast(handle)); if (it == g_soinfo_handles_map.end()) { return nullptr; } else { return it->second; } } return static_cast(handle); } bool do_dlsym(void* handle, const char* sym_name, const char* sym_ver, const void* caller_addr, void** symbol) { ScopedTrace trace("dlsym"); #if !defined(__LP64__) if (handle == nullptr) { DL_SYM_ERR("dlsym failed: library handle is null"); return false; } #endif soinfo* found = nullptr; const ElfW(Sym)* sym = nullptr; soinfo* caller = find_containing_library(caller_addr); android_namespace_t* ns = get_caller_namespace(caller); soinfo* si = nullptr; if (handle != RTLD_DEFAULT && handle != RTLD_NEXT) { si = soinfo_from_handle(handle); } LD_LOG(kLogDlsym, "dlsym(handle=%p(\"%s\"), sym_name=\"%s\", sym_ver=\"%s\", caller=\"%s\", caller_ns=%s@%p) ...", handle, si != nullptr ? si->get_realpath() : "n/a", sym_name, sym_ver, caller == nullptr ? "(null)" : caller->get_realpath(), ns == nullptr ? "(null)" : ns->get_name(), ns); auto failure_guard = android::base::make_scope_guard( [&]() { LD_LOG(kLogDlsym, "... dlsym failed: %s", linker_get_error_buffer()); }); if (sym_name == nullptr) { DL_SYM_ERR("dlsym failed: symbol name is null"); return false; } version_info vi_instance; version_info* vi = nullptr; if (sym_ver != nullptr) { vi_instance.name = sym_ver; vi_instance.elf_hash = calculate_elf_hash(sym_ver); vi = &vi_instance; } if (handle == RTLD_DEFAULT || handle == RTLD_NEXT) { sym = dlsym_linear_lookup(ns, sym_name, vi, &found, caller, handle); } else { if (si == nullptr) { DL_SYM_ERR("dlsym failed: invalid handle: %p", handle); return false; } sym = dlsym_handle_lookup(si, &found, sym_name, vi); } if (sym != nullptr) { uint32_t bind = ELF_ST_BIND(sym->st_info); uint32_t type = ELF_ST_TYPE(sym->st_info); if ((bind == STB_GLOBAL || bind == STB_WEAK) && sym->st_shndx != 0) { if (type == STT_TLS) { // For a TLS symbol, dlsym returns the address of the current thread's // copy of the symbol. const soinfo_tls* tls_module = found->get_tls(); if (tls_module == nullptr) { DL_SYM_ERR("TLS symbol \"%s\" in solib \"%s\" with no TLS segment", sym_name, found->get_realpath()); return false; } void* tls_block = get_tls_block_for_this_thread(tls_module, /*should_alloc=*/true); *symbol = static_cast(tls_block) + sym->st_value; } else { *symbol = reinterpret_cast(found->resolve_symbol_address(sym)); } failure_guard.Disable(); LD_LOG(kLogDlsym, "... dlsym successful: sym_name=\"%s\", sym_ver=\"%s\", found in=\"%s\", address=%p", sym_name, sym_ver, found->get_soname(), *symbol); return true; } DL_SYM_ERR("symbol \"%s\" found but not global", symbol_display_name(sym_name, sym_ver).c_str()); return false; } DL_SYM_ERR("undefined symbol: %s", symbol_display_name(sym_name, sym_ver).c_str()); return false; } int do_dlclose(void* handle) { ScopedTrace trace("dlclose"); ProtectedDataGuard guard; soinfo* si = soinfo_from_handle(handle); if (si == nullptr) { DL_OPEN_ERR("invalid handle: %p", handle); return -1; } LD_LOG(kLogDlopen, "dlclose(handle=%p, realpath=\"%s\"@%p) ...", handle, si->get_realpath(), si); soinfo_unload(si); LD_LOG(kLogDlopen, "dlclose(handle=%p) ... done", handle); return 0; } // Make ns as the anonymous namespace that is a namespace used when // we fail to determine the caller address (e.g., call from mono-jited code) // Since there can be multiple anonymous namespace in a process, subsequent // call to this function causes an error. static bool set_anonymous_namespace(android_namespace_t* ns) { if (!g_anonymous_namespace_set && ns != nullptr) { CHECK(ns->is_also_used_as_anonymous()); g_anonymous_namespace = ns; g_anonymous_namespace_set = true; return true; } return false; } // TODO(b/130388701) remove this. Currently, this is used only for testing // where we don't have classloader namespace. bool init_anonymous_namespace(const char* shared_lib_sonames, const char* library_search_path) { ProtectedDataGuard guard; // Test-only feature: we need to change the anonymous namespace multiple times // while the test is running. g_anonymous_namespace_set = false; // create anonymous namespace // When the caller is nullptr - create_namespace will take global group // from the anonymous namespace, which is fine because anonymous namespace // is still pointing to the default one. android_namespace_t* anon_ns = create_namespace(nullptr, "(anonymous)", nullptr, library_search_path, ANDROID_NAMESPACE_TYPE_ISOLATED | ANDROID_NAMESPACE_TYPE_ALSO_USED_AS_ANONYMOUS, nullptr, &g_default_namespace); CHECK(anon_ns != nullptr); if (!link_namespaces(anon_ns, &g_default_namespace, shared_lib_sonames)) { // TODO: delete anon_ns return false; } return true; } static void add_soinfos_to_namespace(const soinfo_list_t& soinfos, android_namespace_t* ns) { ns->add_soinfos(soinfos); for (auto si : soinfos) { si->add_secondary_namespace(ns); } } std::vector fix_lib_paths(std::vector paths) { // For the bootstrap linker, insert /system/${LIB}/bootstrap in front of /system/${LIB} in any // namespace search path. The bootstrap linker should prefer to use the bootstrap bionic libraries // (e.g. libc.so). #if !defined(__ANDROID_APEX__) for (size_t i = 0; i < paths.size(); ++i) { if (paths[i] == kSystemLibDir) { paths.insert(paths.begin() + i, std::string(kSystemLibDir) + "/bootstrap"); ++i; } } #endif return paths; } android_namespace_t* create_namespace(const void* caller_addr, const char* name, const char* ld_library_path, const char* default_library_path, uint64_t type, const char* permitted_when_isolated_path, android_namespace_t* parent_namespace) { if (parent_namespace == nullptr) { // if parent_namespace is nullptr -> set it to the caller namespace soinfo* caller_soinfo = find_containing_library(caller_addr); parent_namespace = caller_soinfo != nullptr ? caller_soinfo->get_primary_namespace() : g_anonymous_namespace; } ProtectedDataGuard guard; std::vector ld_library_paths; std::vector default_library_paths; std::vector permitted_paths; parse_path(ld_library_path, ":", &ld_library_paths); parse_path(default_library_path, ":", &default_library_paths); parse_path(permitted_when_isolated_path, ":", &permitted_paths); android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t(); ns->set_name(name); ns->set_isolated((type & ANDROID_NAMESPACE_TYPE_ISOLATED) != 0); ns->set_exempt_list_enabled((type & ANDROID_NAMESPACE_TYPE_EXEMPT_LIST_ENABLED) != 0); ns->set_also_used_as_anonymous((type & ANDROID_NAMESPACE_TYPE_ALSO_USED_AS_ANONYMOUS) != 0); if ((type & ANDROID_NAMESPACE_TYPE_SHARED) != 0) { // append parent namespace paths. std::copy(parent_namespace->get_ld_library_paths().begin(), parent_namespace->get_ld_library_paths().end(), back_inserter(ld_library_paths)); std::copy(parent_namespace->get_default_library_paths().begin(), parent_namespace->get_default_library_paths().end(), back_inserter(default_library_paths)); std::copy(parent_namespace->get_permitted_paths().begin(), parent_namespace->get_permitted_paths().end(), back_inserter(permitted_paths)); // If shared - clone the parent namespace add_soinfos_to_namespace(parent_namespace->soinfo_list(), ns); // and copy parent namespace links for (auto& link : parent_namespace->linked_namespaces()) { ns->add_linked_namespace(link.linked_namespace(), link.shared_lib_sonames(), link.allow_all_shared_libs()); } } else { // If not shared - copy only the shared group add_soinfos_to_namespace(parent_namespace->get_shared_group(), ns); } ns->set_ld_library_paths(std::move(ld_library_paths)); ns->set_default_library_paths(std::move(default_library_paths)); ns->set_permitted_paths(std::move(permitted_paths)); if (ns->is_also_used_as_anonymous() && !set_anonymous_namespace(ns)) { DL_ERR("failed to set namespace: [name=\"%s\", ld_library_path=\"%s\", default_library_paths=\"%s\"" " permitted_paths=\"%s\"] as the anonymous namespace", ns->get_name(), android::base::Join(ns->get_ld_library_paths(), ':').c_str(), android::base::Join(ns->get_default_library_paths(), ':').c_str(), android::base::Join(ns->get_permitted_paths(), ':').c_str()); return nullptr; } return ns; } bool link_namespaces(android_namespace_t* namespace_from, android_namespace_t* namespace_to, const char* shared_lib_sonames) { if (namespace_to == nullptr) { namespace_to = &g_default_namespace; } if (namespace_from == nullptr) { DL_ERR("error linking namespaces: namespace_from is null."); return false; } if (shared_lib_sonames == nullptr || shared_lib_sonames[0] == '\0') { DL_ERR("error linking namespaces \"%s\"->\"%s\": the list of shared libraries is empty.", namespace_from->get_name(), namespace_to->get_name()); return false; } auto sonames = android::base::Split(shared_lib_sonames, ":"); std::unordered_set sonames_set(sonames.begin(), sonames.end()); ProtectedDataGuard guard; namespace_from->add_linked_namespace(namespace_to, sonames_set, false); return true; } bool link_namespaces_all_libs(android_namespace_t* namespace_from, android_namespace_t* namespace_to) { if (namespace_from == nullptr) { DL_ERR("error linking namespaces: namespace_from is null."); return false; } if (namespace_to == nullptr) { DL_ERR("error linking namespaces: namespace_to is null."); return false; } ProtectedDataGuard guard; namespace_from->add_linked_namespace(namespace_to, std::unordered_set(), true); return true; } ElfW(Addr) call_ifunc_resolver(ElfW(Addr) resolver_addr) { if (g_is_ldd) return 0; ElfW(Addr) ifunc_addr = __bionic_call_ifunc_resolver(resolver_addr); TRACE_TYPE(RELO, "Called ifunc_resolver@%p. The result is %p", reinterpret_cast(resolver_addr), reinterpret_cast(ifunc_addr)); return ifunc_addr; } const version_info* VersionTracker::get_version_info(ElfW(Versym) source_symver) const { if (source_symver < 2 || source_symver >= version_infos.size() || version_infos[source_symver].name == nullptr) { return nullptr; } return &version_infos[source_symver]; } void VersionTracker::add_version_info(size_t source_index, ElfW(Word) elf_hash, const char* ver_name, const soinfo* target_si) { if (source_index >= version_infos.size()) { version_infos.resize(source_index+1); } version_infos[source_index].elf_hash = elf_hash; version_infos[source_index].name = ver_name; version_infos[source_index].target_si = target_si; } bool VersionTracker::init_verneed(const soinfo* si_from) { uintptr_t verneed_ptr = si_from->get_verneed_ptr(); if (verneed_ptr == 0) { return true; } size_t verneed_cnt = si_from->get_verneed_cnt(); for (size_t i = 0, offset = 0; i(verneed_ptr + offset); size_t vernaux_offset = offset + verneed->vn_aux; offset += verneed->vn_next; if (verneed->vn_version != 1) { DL_ERR("unsupported verneed[%zd] vn_version: %d (expected 1)", i, verneed->vn_version); return false; } const char* target_soname = si_from->get_string(verneed->vn_file); // find it in dependencies soinfo* target_si = si_from->get_children().find_if( [&](const soinfo* si) { return strcmp(si->get_soname(), target_soname) == 0; }); if (target_si == nullptr) { DL_ERR("cannot find \"%s\" from verneed[%zd] in DT_NEEDED list for \"%s\"", target_soname, i, si_from->get_realpath()); return false; } for (size_t j = 0; jvn_cnt; ++j) { const ElfW(Vernaux)* vernaux = reinterpret_cast(verneed_ptr + vernaux_offset); vernaux_offset += vernaux->vna_next; const ElfW(Word) elf_hash = vernaux->vna_hash; const char* ver_name = si_from->get_string(vernaux->vna_name); ElfW(Half) source_index = vernaux->vna_other; add_version_info(source_index, elf_hash, ver_name, target_si); } } return true; } template static bool for_each_verdef(const soinfo* si, F functor) { if (!si->has_min_version(2)) { return true; } uintptr_t verdef_ptr = si->get_verdef_ptr(); if (verdef_ptr == 0) { return true; } size_t offset = 0; size_t verdef_cnt = si->get_verdef_cnt(); for (size_t i = 0; i(verdef_ptr + offset); size_t verdaux_offset = offset + verdef->vd_aux; offset += verdef->vd_next; if (verdef->vd_version != 1) { DL_ERR("unsupported verdef[%zd] vd_version: %d (expected 1) library: %s", i, verdef->vd_version, si->get_realpath()); return false; } if ((verdef->vd_flags & VER_FLG_BASE) != 0) { // "this is the version of the file itself. It must not be used for // matching a symbol. It can be used to match references." // // http://www.akkadia.org/drepper/symbol-versioning continue; } if (verdef->vd_cnt == 0) { DL_ERR("invalid verdef[%zd] vd_cnt == 0 (version without a name)", i); return false; } const ElfW(Verdaux)* verdaux = reinterpret_cast(verdef_ptr + verdaux_offset); if (functor(i, verdef, verdaux) == true) { break; } } return true; } ElfW(Versym) find_verdef_version_index(const soinfo* si, const version_info* vi) { if (vi == nullptr) { return kVersymNotNeeded; } ElfW(Versym) result = kVersymGlobal; if (!for_each_verdef(si, [&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) { if (verdef->vd_hash == vi->elf_hash && strcmp(vi->name, si->get_string(verdaux->vda_name)) == 0) { result = verdef->vd_ndx; return true; } return false; } )) { // verdef should have already been validated in prelink_image. async_safe_fatal("invalid verdef after prelinking: %s, %s", si->get_realpath(), linker_get_error_buffer()); } return result; } // Validate the library's verdef section. On error, returns false and invokes DL_ERR. bool validate_verdef_section(const soinfo* si) { return for_each_verdef(si, [&](size_t, const ElfW(Verdef)*, const ElfW(Verdaux)*) { return false; }); } bool VersionTracker::init_verdef(const soinfo* si_from) { return for_each_verdef(si_from, [&](size_t, const ElfW(Verdef)* verdef, const ElfW(Verdaux)* verdaux) { add_version_info(verdef->vd_ndx, verdef->vd_hash, si_from->get_string(verdaux->vda_name), si_from); return false; } ); } bool VersionTracker::init(const soinfo* si_from) { if (!si_from->has_min_version(2)) { return true; } return init_verneed(si_from) && init_verdef(si_from); } // TODO (dimitry): Methods below need to be moved out of soinfo // and in more isolated file in order minimize dependencies on // unnecessary object in the linker binary. Consider making them // independent from soinfo (?). bool soinfo::lookup_version_info(const VersionTracker& version_tracker, ElfW(Word) sym, const char* sym_name, const version_info** vi) { const ElfW(Versym)* sym_ver_ptr = get_versym(sym); ElfW(Versym) sym_ver = sym_ver_ptr == nullptr ? 0 : *sym_ver_ptr; if (sym_ver != VER_NDX_LOCAL && sym_ver != VER_NDX_GLOBAL) { *vi = version_tracker.get_version_info(sym_ver); if (*vi == nullptr) { DL_ERR("cannot find verneed/verdef for version index=%d " "referenced by symbol \"%s\" at \"%s\"", sym_ver, sym_name, get_realpath()); return false; } } else { // there is no version info *vi = nullptr; } return true; } void soinfo::apply_relr_reloc(ElfW(Addr) offset) { ElfW(Addr) address = offset + load_bias; *reinterpret_cast(address) += load_bias; } // Process relocations in SHT_RELR section (experimental). // Details of the encoding are described in this post: // https://groups.google.com/d/msg/generic-abi/bX460iggiKg/Pi9aSwwABgAJ bool soinfo::relocate_relr() { ElfW(Relr)* begin = relr_; ElfW(Relr)* end = relr_ + relr_count_; constexpr size_t wordsize = sizeof(ElfW(Addr)); ElfW(Addr) base = 0; for (ElfW(Relr)* current = begin; current < end; ++current) { ElfW(Relr) entry = *current; ElfW(Addr) offset; if ((entry&1) == 0) { // Even entry: encodes the offset for next relocation. offset = static_cast(entry); apply_relr_reloc(offset); // Set base offset for subsequent bitmap entries. base = offset + wordsize; continue; } // Odd entry: encodes bitmap for relocations starting at base. offset = base; while (entry != 0) { entry >>= 1; if ((entry&1) != 0) { apply_relr_reloc(offset); } offset += wordsize; } // Advance base offset by 63 words for 64-bit platforms, // or 31 words for 32-bit platforms. base += (8*wordsize - 1) * wordsize; } return true; } // An empty list of soinfos static soinfo_list_t g_empty_list; bool soinfo::prelink_image() { if (flags_ & FLAG_PRELINKED) return true; /* Extract dynamic section */ ElfW(Word) dynamic_flags = 0; phdr_table_get_dynamic_section(phdr, phnum, load_bias, &dynamic, &dynamic_flags); /* We can't log anything until the linker is relocated */ bool relocating_linker = (flags_ & FLAG_LINKER) != 0; if (!relocating_linker) { INFO("[ Linking \"%s\" ]", get_realpath()); DEBUG("si->base = %p si->flags = 0x%08x", reinterpret_cast(base), flags_); } if (dynamic == nullptr) { if (!relocating_linker) { DL_ERR("missing PT_DYNAMIC in \"%s\"", get_realpath()); } return false; } else { if (!relocating_linker) { DEBUG("dynamic = %p", dynamic); } } #if defined(__arm__) (void) phdr_table_get_arm_exidx(phdr, phnum, load_bias, &ARM_exidx, &ARM_exidx_count); #endif TlsSegment tls_segment; if (__bionic_get_tls_segment(phdr, phnum, load_bias, &tls_segment)) { if (!__bionic_check_tls_alignment(&tls_segment.alignment)) { if (!relocating_linker) { DL_ERR("TLS segment alignment in \"%s\" is not a power of 2: %zu", get_realpath(), tls_segment.alignment); } return false; } tls_ = std::make_unique(); tls_->segment = tls_segment; } // Extract useful information from dynamic section. // Note that: "Except for the DT_NULL element at the end of the array, // and the relative order of DT_NEEDED elements, entries may appear in any order." // // source: http://www.sco.com/developers/gabi/1998-04-29/ch5.dynamic.html uint32_t needed_count = 0; for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) { DEBUG("d = %p, d[0](tag) = %p d[1](val) = %p", d, reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); switch (d->d_tag) { case DT_SONAME: // this is parsed after we have strtab initialized (see below). break; case DT_HASH: nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; nchain_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; bucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8); chain_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 8 + nbucket_ * 4); break; case DT_GNU_HASH: gnu_nbucket_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[0]; // skip symndx gnu_maskwords_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[2]; gnu_shift2_ = reinterpret_cast(load_bias + d->d_un.d_ptr)[3]; gnu_bloom_filter_ = reinterpret_cast(load_bias + d->d_un.d_ptr + 16); gnu_bucket_ = reinterpret_cast(gnu_bloom_filter_ + gnu_maskwords_); // amend chain for symndx = header[1] gnu_chain_ = gnu_bucket_ + gnu_nbucket_ - reinterpret_cast(load_bias + d->d_un.d_ptr)[1]; if (!powerof2(gnu_maskwords_)) { DL_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two", gnu_maskwords_, get_realpath()); return false; } --gnu_maskwords_; flags_ |= FLAG_GNU_HASH; break; case DT_STRTAB: strtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_STRSZ: strtab_size_ = d->d_un.d_val; break; case DT_SYMTAB: symtab_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_SYMENT: if (d->d_un.d_val != sizeof(ElfW(Sym))) { DL_ERR("invalid DT_SYMENT: %zd in \"%s\"", static_cast(d->d_un.d_val), get_realpath()); return false; } break; case DT_PLTREL: #if defined(USE_RELA) if (d->d_un.d_val != DT_RELA) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", get_realpath()); return false; } #else if (d->d_un.d_val != DT_REL) { DL_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", get_realpath()); return false; } #endif break; case DT_JMPREL: #if defined(USE_RELA) plt_rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #else plt_rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); #endif break; case DT_PLTRELSZ: #if defined(USE_RELA) plt_rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); #else plt_rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); #endif break; case DT_PLTGOT: // Ignored (because RTLD_LAZY is not supported). break; case DT_DEBUG: // Set the DT_DEBUG entry to the address of _r_debug for GDB // if the dynamic table is writable if ((dynamic_flags & PF_W) != 0) { d->d_un.d_val = reinterpret_cast(&_r_debug); } break; #if defined(USE_RELA) case DT_RELA: rela_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELASZ: rela_count_ = d->d_un.d_val / sizeof(ElfW(Rela)); break; case DT_ANDROID_RELA: android_relocs_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_ANDROID_RELASZ: android_relocs_size_ = d->d_un.d_val; break; case DT_ANDROID_REL: DL_ERR("unsupported DT_ANDROID_REL in \"%s\"", get_realpath()); return false; case DT_ANDROID_RELSZ: DL_ERR("unsupported DT_ANDROID_RELSZ in \"%s\"", get_realpath()); return false; case DT_RELAENT: if (d->d_un.d_val != sizeof(ElfW(Rela))) { DL_ERR("invalid DT_RELAENT: %zd", static_cast(d->d_un.d_val)); return false; } break; // Ignored (see DT_RELCOUNT comments for details). case DT_RELACOUNT: break; case DT_REL: DL_ERR("unsupported DT_REL in \"%s\"", get_realpath()); return false; case DT_RELSZ: DL_ERR("unsupported DT_RELSZ in \"%s\"", get_realpath()); return false; #else case DT_REL: rel_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELSZ: rel_count_ = d->d_un.d_val / sizeof(ElfW(Rel)); break; case DT_RELENT: if (d->d_un.d_val != sizeof(ElfW(Rel))) { DL_ERR("invalid DT_RELENT: %zd", static_cast(d->d_un.d_val)); return false; } break; case DT_ANDROID_REL: android_relocs_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_ANDROID_RELSZ: android_relocs_size_ = d->d_un.d_val; break; case DT_ANDROID_RELA: DL_ERR("unsupported DT_ANDROID_RELA in \"%s\"", get_realpath()); return false; case DT_ANDROID_RELASZ: DL_ERR("unsupported DT_ANDROID_RELASZ in \"%s\"", get_realpath()); return false; // "Indicates that all RELATIVE relocations have been concatenated together, // and specifies the RELATIVE relocation count." // // TODO: Spec also mentions that this can be used to optimize relocation process; // Not currently used by bionic linker - ignored. case DT_RELCOUNT: break; case DT_RELA: DL_ERR("unsupported DT_RELA in \"%s\"", get_realpath()); return false; case DT_RELASZ: DL_ERR("unsupported DT_RELASZ in \"%s\"", get_realpath()); return false; #endif case DT_RELR: case DT_ANDROID_RELR: relr_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_RELRSZ: case DT_ANDROID_RELRSZ: relr_count_ = d->d_un.d_val / sizeof(ElfW(Relr)); break; case DT_RELRENT: case DT_ANDROID_RELRENT: if (d->d_un.d_val != sizeof(ElfW(Relr))) { DL_ERR("invalid DT_RELRENT: %zd", static_cast(d->d_un.d_val)); return false; } break; // Ignored (see DT_RELCOUNT comments for details). // There is no DT_RELRCOUNT specifically because it would only be ignored. case DT_ANDROID_RELRCOUNT: break; case DT_INIT: init_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT) found at %p", get_realpath(), init_func_); break; case DT_FINI: fini_func_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI) found at %p", get_realpath(), fini_func_); break; case DT_INIT_ARRAY: init_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_INIT_ARRAY) found at %p", get_realpath(), init_array_); break; case DT_INIT_ARRAYSZ: init_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_FINI_ARRAY: fini_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s destructors (DT_FINI_ARRAY) found at %p", get_realpath(), fini_array_); break; case DT_FINI_ARRAYSZ: fini_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_PREINIT_ARRAY: preinit_array_ = reinterpret_cast(load_bias + d->d_un.d_ptr); DEBUG("%s constructors (DT_PREINIT_ARRAY) found at %p", get_realpath(), preinit_array_); break; case DT_PREINIT_ARRAYSZ: preinit_array_count_ = static_cast(d->d_un.d_val) / sizeof(ElfW(Addr)); break; case DT_TEXTREL: #if defined(__LP64__) DL_ERR("\"%s\" has text relocations", get_realpath()); return false; #else has_text_relocations = true; break; #endif case DT_SYMBOLIC: has_DT_SYMBOLIC = true; break; case DT_NEEDED: ++needed_count; break; case DT_FLAGS: if (d->d_un.d_val & DF_TEXTREL) { #if defined(__LP64__) DL_ERR("\"%s\" has text relocations", get_realpath()); return false; #else has_text_relocations = true; #endif } if (d->d_un.d_val & DF_SYMBOLIC) { has_DT_SYMBOLIC = true; } break; case DT_FLAGS_1: set_dt_flags_1(d->d_un.d_val); if ((d->d_un.d_val & ~SUPPORTED_DT_FLAGS_1) != 0) { DL_WARN("Warning: \"%s\" has unsupported flags DT_FLAGS_1=%p " "(ignoring unsupported flags)", get_realpath(), reinterpret_cast(d->d_un.d_val)); } break; // Ignored: "Its use has been superseded by the DF_BIND_NOW flag" case DT_BIND_NOW: break; case DT_VERSYM: versym_ = reinterpret_cast(load_bias + d->d_un.d_ptr); break; case DT_VERDEF: verdef_ptr_ = load_bias + d->d_un.d_ptr; break; case DT_VERDEFNUM: verdef_cnt_ = d->d_un.d_val; break; case DT_VERNEED: verneed_ptr_ = load_bias + d->d_un.d_ptr; break; case DT_VERNEEDNUM: verneed_cnt_ = d->d_un.d_val; break; case DT_RUNPATH: // this is parsed after we have strtab initialized (see below). break; case DT_TLSDESC_GOT: case DT_TLSDESC_PLT: // These DT entries are used for lazy TLSDESC relocations. Bionic // resolves everything eagerly, so these can be ignored. break; #if defined(__aarch64__) case DT_AARCH64_BTI_PLT: case DT_AARCH64_PAC_PLT: case DT_AARCH64_VARIANT_PCS: // Ignored: AArch64 processor-specific dynamic array tags. break; #endif default: if (!relocating_linker) { const char* tag_name; if (d->d_tag == DT_RPATH) { tag_name = "DT_RPATH"; } else if (d->d_tag == DT_ENCODING) { tag_name = "DT_ENCODING"; } else if (d->d_tag >= DT_LOOS && d->d_tag <= DT_HIOS) { tag_name = "unknown OS-specific"; } else if (d->d_tag >= DT_LOPROC && d->d_tag <= DT_HIPROC) { tag_name = "unknown processor-specific"; } else { tag_name = "unknown"; } DL_WARN("Warning: \"%s\" unused DT entry: %s (type %p arg %p) (ignoring)", get_realpath(), tag_name, reinterpret_cast(d->d_tag), reinterpret_cast(d->d_un.d_val)); } break; } } DEBUG("si->base = %p, si->strtab = %p, si->symtab = %p", reinterpret_cast(base), strtab_, symtab_); // Validity checks. if (relocating_linker && needed_count != 0) { DL_ERR("linker cannot have DT_NEEDED dependencies on other libraries"); return false; } if (nbucket_ == 0 && gnu_nbucket_ == 0) { DL_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" " "(new hash type from the future?)", get_realpath()); return false; } if (strtab_ == nullptr) { DL_ERR("empty/missing DT_STRTAB in \"%s\"", get_realpath()); return false; } if (symtab_ == nullptr) { DL_ERR("empty/missing DT_SYMTAB in \"%s\"", get_realpath()); return false; } // Second pass - parse entries relying on strtab. Skip this while relocating the linker so as to // avoid doing heap allocations until later in the linker's initialization. if (!relocating_linker) { for (ElfW(Dyn)* d = dynamic; d->d_tag != DT_NULL; ++d) { switch (d->d_tag) { case DT_SONAME: set_soname(get_string(d->d_un.d_val)); break; case DT_RUNPATH: set_dt_runpath(get_string(d->d_un.d_val)); break; } } } // Before M release, linker was using basename in place of soname. In the case when DT_SONAME is // absent some apps stop working because they can't find DT_NEEDED library by soname. This // workaround should keep them working. (Applies only for apps targeting sdk version < M.) Make // an exception for the main executable, which does not need to have DT_SONAME. The linker has an // DT_SONAME but the soname_ field is initialized later on. if (soname_.empty() && this != solist_get_somain() && !relocating_linker && get_application_target_sdk_version() < 23) { soname_ = basename(realpath_.c_str()); DL_WARN_documented_change(23, "missing-soname-enforced-for-api-level-23", "\"%s\" has no DT_SONAME (will use %s instead)", get_realpath(), soname_.c_str()); // Don't call add_dlwarning because a missing DT_SONAME isn't important enough to show in the UI } // Validate each library's verdef section once, so we don't have to validate // it each time we look up a symbol with a version. if (!validate_verdef_section(this)) return false; flags_ |= FLAG_PRELINKED; return true; } bool soinfo::link_image(const SymbolLookupList& lookup_list, soinfo* local_group_root, const android_dlextinfo* extinfo, size_t* relro_fd_offset) { if (is_image_linked()) { // already linked. return true; } if (g_is_ldd && !is_main_executable()) { async_safe_format_fd(STDOUT_FILENO, "\t%s => %s (%p)\n", get_soname(), get_realpath(), reinterpret_cast(base)); } local_group_root_ = local_group_root; if (local_group_root_ == nullptr) { local_group_root_ = this; } if ((flags_ & FLAG_LINKER) == 0 && local_group_root_ == this) { target_sdk_version_ = get_application_target_sdk_version(); } #if !defined(__LP64__) if (has_text_relocations) { // Fail if app is targeting M or above. int app_target_api_level = get_application_target_sdk_version(); if (app_target_api_level >= 23) { DL_ERR_AND_LOG("\"%s\" has text relocations (%s#Text-Relocations-Enforced-for-API-level-23)", get_realpath(), kBionicChangesUrl); return false; } // Make segments writable to allow text relocations to work properly. We will later call // phdr_table_protect_segments() after all of them are applied. DL_WARN_documented_change(23, "Text-Relocations-Enforced-for-API-level-23", "\"%s\" has text relocations", get_realpath()); add_dlwarning(get_realpath(), "text relocations"); if (phdr_table_unprotect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't unprotect loadable segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif if (!relocate(lookup_list)) { return false; } DEBUG("[ finished linking %s ]", get_realpath()); #if !defined(__LP64__) if (has_text_relocations) { // All relocations are done, we can protect our segments back to read-only. if (phdr_table_protect_segments(phdr, phnum, load_bias) < 0) { DL_ERR("can't protect segments for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } #endif // We can also turn on GNU RELRO protection if we're not linking the dynamic linker // itself --- it can't make system calls yet, and will have to call protect_relro later. if (!is_linker() && !protect_relro()) { return false; } /* Handle serializing/sharing the RELRO segment */ if (extinfo && (extinfo->flags & ANDROID_DLEXT_WRITE_RELRO)) { if (phdr_table_serialize_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd, relro_fd_offset) < 0) { DL_ERR("failed serializing GNU RELRO section for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } else if (extinfo && (extinfo->flags & ANDROID_DLEXT_USE_RELRO)) { if (phdr_table_map_gnu_relro(phdr, phnum, load_bias, extinfo->relro_fd, relro_fd_offset) < 0) { DL_ERR("failed mapping GNU RELRO section for \"%s\": %s", get_realpath(), strerror(errno)); return false; } } ++g_module_load_counter; notify_gdb_of_load(this); set_image_linked(); return true; } bool soinfo::protect_relro() { if (phdr_table_protect_gnu_relro(phdr, phnum, load_bias) < 0) { DL_ERR("can't enable GNU RELRO protection for \"%s\": %s", get_realpath(), strerror(errno)); return false; } return true; } static std::vector init_default_namespace_no_config(bool is_asan) { g_default_namespace.set_isolated(false); auto default_ld_paths = is_asan ? kAsanDefaultLdPaths : kDefaultLdPaths; char real_path[PATH_MAX]; std::vector ld_default_paths; for (size_t i = 0; default_ld_paths[i] != nullptr; ++i) { if (realpath(default_ld_paths[i], real_path) != nullptr) { ld_default_paths.push_back(real_path); } else { ld_default_paths.push_back(default_ld_paths[i]); } } g_default_namespace.set_default_library_paths(std::move(ld_default_paths)); std::vector namespaces; namespaces.push_back(&g_default_namespace); return namespaces; } // Given an `executable_path` starting with "/apex//bin/, return // "/linkerconfig//ld.config.txt" (or "/apex//etc/ld.config.txt", if // the former does not exist). static std::string get_ld_config_file_apex_path(const char* executable_path) { std::vector paths = android::base::Split(executable_path, "/"); if (paths.size() >= 5 && paths[1] == "apex" && paths[3] == "bin") { // Check auto-generated ld.config.txt first std::string generated_apex_config = "/linkerconfig/" + paths[2] + "/ld.config.txt"; if (file_exists(generated_apex_config.c_str())) { return generated_apex_config; } return std::string("/apex/") + paths[2] + "/etc/ld.config.txt"; } return ""; } static std::string get_ld_config_file_vndk_path() { if (android::base::GetBoolProperty("ro.vndk.lite", false)) { return kLdConfigVndkLiteFilePath; } std::string ld_config_file_vndk = kLdConfigFilePath; size_t insert_pos = ld_config_file_vndk.find_last_of('.'); if (insert_pos == std::string::npos) { insert_pos = ld_config_file_vndk.length(); } ld_config_file_vndk.insert(insert_pos, Config::get_vndk_version_string('.')); return ld_config_file_vndk; } bool is_linker_config_expected(const char* executable_path) { // Do not raise message from a host environment which is expected to miss generated linker // configuration. #if !defined(__ANDROID__) return false; #endif if (strcmp(executable_path, "/system/bin/init") == 0) { // Generated linker configuration can be missed from processes executed // with init binary return false; } return true; } static std::string get_ld_config_file_path(const char* executable_path) { #ifdef USE_LD_CONFIG_FILE // This is a debugging/testing only feature. Must not be available on // production builds. const char* ld_config_file_env = getenv("LD_CONFIG_FILE"); if (ld_config_file_env != nullptr && file_exists(ld_config_file_env)) { return ld_config_file_env; } #endif std::string path = get_ld_config_file_apex_path(executable_path); if (!path.empty()) { if (file_exists(path.c_str())) { return path; } DL_WARN("Warning: couldn't read config file \"%s\" for \"%s\"", path.c_str(), executable_path); } path = kLdConfigArchFilePath; if (file_exists(path.c_str())) { return path; } if (file_exists(kLdGeneratedConfigFilePath)) { return kLdGeneratedConfigFilePath; } if (is_linker_config_expected(executable_path)) { DL_WARN("Warning: failed to find generated linker configuration from \"%s\"", kLdGeneratedConfigFilePath); } path = get_ld_config_file_vndk_path(); if (file_exists(path.c_str())) { return path; } return kLdConfigFilePath; } std::vector init_default_namespaces(const char* executable_path) { g_default_namespace.set_name("(default)"); soinfo* somain = solist_get_somain(); const char *interp = phdr_table_get_interpreter_name(somain->phdr, somain->phnum, somain->load_bias); const char* bname = (interp != nullptr) ? basename(interp) : nullptr; g_is_asan = bname != nullptr && (strcmp(bname, "linker_asan") == 0 || strcmp(bname, "linker_asan64") == 0); const Config* config = nullptr; { std::string ld_config_file_path = get_ld_config_file_path(executable_path); INFO("[ Reading linker config \"%s\" ]", ld_config_file_path.c_str()); ScopedTrace trace(("linker config " + ld_config_file_path).c_str()); std::string error_msg; if (!Config::read_binary_config(ld_config_file_path.c_str(), executable_path, g_is_asan, &config, &error_msg)) { if (!error_msg.empty()) { DL_WARN("Warning: couldn't read '%s' for '%s' (using default configuration instead): %s", ld_config_file_path.c_str(), executable_path, error_msg.c_str()); } config = nullptr; } } if (config == nullptr) { return init_default_namespace_no_config(g_is_asan); } const auto& namespace_configs = config->namespace_configs(); std::unordered_map namespaces; // 1. Initialize default namespace const NamespaceConfig* default_ns_config = config->default_namespace_config(); g_default_namespace.set_isolated(default_ns_config->isolated()); g_default_namespace.set_default_library_paths(default_ns_config->search_paths()); g_default_namespace.set_permitted_paths(default_ns_config->permitted_paths()); namespaces[default_ns_config->name()] = &g_default_namespace; if (default_ns_config->visible()) { g_exported_namespaces[default_ns_config->name()] = &g_default_namespace; } // 2. Initialize other namespaces for (auto& ns_config : namespace_configs) { if (namespaces.find(ns_config->name()) != namespaces.end()) { continue; } android_namespace_t* ns = new (g_namespace_allocator.alloc()) android_namespace_t(); ns->set_name(ns_config->name()); ns->set_isolated(ns_config->isolated()); ns->set_default_library_paths(ns_config->search_paths()); ns->set_permitted_paths(ns_config->permitted_paths()); ns->set_allowed_libs(ns_config->allowed_libs()); namespaces[ns_config->name()] = ns; if (ns_config->visible()) { g_exported_namespaces[ns_config->name()] = ns; } } // 3. Establish links between namespaces for (auto& ns_config : namespace_configs) { auto it_from = namespaces.find(ns_config->name()); CHECK(it_from != namespaces.end()); android_namespace_t* namespace_from = it_from->second; for (const NamespaceLinkConfig& ns_link : ns_config->links()) { auto it_to = namespaces.find(ns_link.ns_name()); CHECK(it_to != namespaces.end()); android_namespace_t* namespace_to = it_to->second; if (ns_link.allow_all_shared_libs()) { link_namespaces_all_libs(namespace_from, namespace_to); } else { link_namespaces(namespace_from, namespace_to, ns_link.shared_libs().c_str()); } } } // we can no longer rely on the fact that libdl.so is part of default namespace // this is why we want to add ld-android.so to all namespaces from ld.config.txt soinfo* ld_android_so = solist_get_head(); // we also need vdso to be available for all namespaces (if present) soinfo* vdso = solist_get_vdso(); for (auto it : namespaces) { if (it.second != &g_default_namespace) { it.second->add_soinfo(ld_android_so); if (vdso != nullptr) { it.second->add_soinfo(vdso); } // somain and ld_preloads are added to these namespaces after LD_PRELOAD libs are linked } } set_application_target_sdk_version(config->target_sdk_version()); std::vector created_namespaces; created_namespaces.reserve(namespaces.size()); for (const auto& kv : namespaces) { created_namespaces.push_back(kv.second); } return created_namespaces; } // This function finds a namespace exported in ld.config.txt by its name. // A namespace can be exported by setting .visible property to true. android_namespace_t* get_exported_namespace(const char* name) { if (name == nullptr) { return nullptr; } auto it = g_exported_namespaces.find(std::string(name)); if (it == g_exported_namespaces.end()) { return nullptr; } return it->second; } void purge_unused_memory() { // For now, we only purge the memory used by LoadTask because we know those // are temporary objects. // // Purging other LinkerBlockAllocator hardly yields much because they hold // information about namespaces and opened libraries, which are not freed // when the control leaves the linker. // // Purging BionicAllocator may give us a few dirty pages back, but those pages // would be already zeroed out, so they compress easily in ZRAM. Therefore, // it is not worth munmap()'ing those pages. TypeBasedAllocator::purge(); }