// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include namespace { template inline T doz(T a, T b) { return a > b ? a - b : T(0); } } // namespace class DeconvolutionOperatorTester { public: inline DeconvolutionOperatorTester& padding_tf_same(bool padding_same) { if (padding_same) { assert(padding_top() == 0); assert(padding_left() == 0); assert(padding_bottom() == 0); assert(padding_right() == 0); } this->padding_tf_same_ = padding_same; return *this; } inline bool padding_tf_same() const { return this->padding_tf_same_; } inline DeconvolutionOperatorTester& padding(uint32_t padding) { assert(!padding_tf_same()); this->padding_top_ = padding; this->padding_right_ = padding; this->padding_bottom_ = padding; this->padding_left_ = padding; return *this; } inline DeconvolutionOperatorTester& padding(uint32_t padding_height, uint32_t padding_width) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_right_ = padding_width; this->padding_bottom_ = padding_height; this->padding_left_ = padding_width; return *this; } inline DeconvolutionOperatorTester& padding_height(uint32_t padding_height) { assert(!padding_tf_same()); this->padding_top_ = padding_height; this->padding_bottom_ = padding_height; return *this; } inline uint32_t padding_height() const { if (padding_tf_same()) { return doz(dilated_kernel_height() - 1, static_cast((input_height() - 1) % stride_height())); } else { return this->padding_top_ + this->padding_bottom_; } } inline DeconvolutionOperatorTester& padding_width(uint32_t padding_width) { assert(!padding_tf_same()); this->padding_right_ = padding_width; this->padding_left_ = padding_width; return *this; } inline uint32_t padding_width() const { if (padding_tf_same()) { return doz(dilated_kernel_width() - 1, static_cast((input_width() - 1) % stride_width())); } else { return this->padding_left_ + this->padding_right_; } } inline DeconvolutionOperatorTester& padding_top(uint32_t padding_top) { assert(!padding_tf_same()); this->padding_top_ = padding_top; return *this; } inline uint32_t padding_top() const { if (padding_tf_same()) { return padding_height() / 2; } else { return this->padding_top_; } } inline DeconvolutionOperatorTester& padding_right(uint32_t padding_right) { assert(!padding_tf_same()); this->padding_right_ = padding_right; return *this; } inline uint32_t padding_right() const { if (padding_tf_same()) { return padding_width() - padding_left(); } else { return this->padding_right_; } } inline DeconvolutionOperatorTester& padding_bottom(uint32_t padding_bottom) { assert(!padding_tf_same()); this->padding_bottom_ = padding_bottom; return *this; } inline uint32_t padding_bottom() const { if (padding_tf_same()) { return padding_height() - padding_top(); } else { return this->padding_bottom_; } } inline DeconvolutionOperatorTester& padding_left(uint32_t padding_left) { assert(!padding_tf_same()); this->padding_left_ = padding_left; return *this; } inline uint32_t padding_left() const { if (padding_tf_same()) { return padding_width() / 2; } else { return this->padding_left_; } } inline DeconvolutionOperatorTester& adjustment_height(uint32_t adjustment_height) { this->adjustment_height_ = adjustment_height; return *this; } inline uint32_t adjustment_height() const { return this->adjustment_height_; } inline DeconvolutionOperatorTester& adjustment_width(uint32_t adjustment_width) { this->adjustment_width_ = adjustment_width; return *this; } inline uint32_t adjustment_width() const { return this->adjustment_width_; } inline DeconvolutionOperatorTester& input_size(uint32_t input_height, uint32_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline DeconvolutionOperatorTester& input_height(uint32_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline uint32_t input_height() const { return this->input_height_; } inline DeconvolutionOperatorTester& input_width(uint32_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline uint32_t input_width() const { return this->input_width_; } inline DeconvolutionOperatorTester& groups(uint32_t groups) { assert(groups >= 1); this->groups_ = groups; return *this; } inline uint32_t groups() const { return this->groups_; } inline DeconvolutionOperatorTester& group_input_channels(size_t group_input_channels) { assert(group_input_channels >= 1); this->group_input_channels_ = group_input_channels; return *this; } inline size_t group_input_channels() const { return this->group_input_channels_; } inline DeconvolutionOperatorTester& group_output_channels(size_t group_output_channels) { assert(group_output_channels >= 1); this->group_output_channels_ = group_output_channels; return *this; } inline size_t group_output_channels() const { return this->group_output_channels_; } inline DeconvolutionOperatorTester& batch_size(size_t batch_size) { assert(batch_size >= 1); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline DeconvolutionOperatorTester& kernel_size(uint32_t kernel_size) { assert(kernel_size >= 1); this->kernel_height_ = kernel_size; this->kernel_width_ = kernel_size; return *this; } inline DeconvolutionOperatorTester& kernel_size(uint32_t kernel_height, uint32_t kernel_width) { assert(kernel_height >= 1); assert(kernel_width >= 1); this->kernel_height_ = kernel_height; this->kernel_width_ = kernel_width; return *this; } inline DeconvolutionOperatorTester& kernel_height(uint32_t kernel_height) { assert(kernel_height >= 1); this->kernel_height_ = kernel_height; return *this; } inline uint32_t kernel_height() const { return this->kernel_height_; } inline DeconvolutionOperatorTester& kernel_width(uint32_t kernel_width) { assert(kernel_width >= 1); this->kernel_width_ = kernel_width; return *this; } inline uint32_t kernel_width() const { return this->kernel_width_; } inline DeconvolutionOperatorTester& dilation(uint32_t dilation) { assert(dilation >= 1); this->dilation_height_ = dilation; this->dilation_width_ = dilation; return *this; } inline DeconvolutionOperatorTester& dilation(uint32_t dilation_height, uint32_t dilation_width) { assert(dilation_height >= 1); assert(dilation_width >= 1); this->dilation_height_ = dilation_height; this->dilation_width_ = dilation_width; return *this; } inline DeconvolutionOperatorTester& dilation_height(uint32_t dilation_height) { assert(dilation_height >= 1); this->dilation_height_ = dilation_height; return *this; } inline uint32_t dilation_height() const { return this->dilation_height_; } inline DeconvolutionOperatorTester& dilation_width(uint32_t dilation_width) { assert(dilation_width >= 1); this->dilation_width_ = dilation_width; return *this; } inline uint32_t dilation_width() const { return this->dilation_width_; } inline DeconvolutionOperatorTester& stride(uint32_t stride) { assert(stride >= 1); this->stride_height_ = stride; this->stride_width_ = stride; return *this; } inline DeconvolutionOperatorTester& stride(uint32_t stride_height, uint32_t stride_width) { assert(stride_height >= 1); assert(stride_width >= 1); this->stride_height_ = stride_height; this->stride_width_ = stride_width; return *this; } inline DeconvolutionOperatorTester& stride_height(uint32_t stride_height) { assert(stride_height >= 1); this->stride_height_ = stride_height; return *this; } inline uint32_t stride_height() const { return this->stride_height_; } inline DeconvolutionOperatorTester& stride_width(uint32_t stride_width) { assert(stride_width >= 1); this->stride_width_ = stride_width; return *this; } inline uint32_t stride_width() const { return this->stride_width_; } inline DeconvolutionOperatorTester& input_pixel_stride(size_t input_pixel_stride) { assert(input_pixel_stride >= 1); this->input_pixel_stride_ = input_pixel_stride; return *this; } inline size_t input_pixel_stride() const { if (this->input_pixel_stride_ == 0) { return group_input_channels() * groups(); } else { assert(this->input_pixel_stride_ >= group_input_channels() * groups()); return this->input_pixel_stride_; } } inline DeconvolutionOperatorTester& output_pixel_stride(size_t output_pixel_stride) { assert(output_pixel_stride >= 1); this->output_pixel_stride_ = output_pixel_stride; return *this; } inline size_t output_pixel_stride() const { if (this->output_pixel_stride_ == 0) { return group_output_channels() * groups(); } else { assert(this->output_pixel_stride_ >= group_output_channels() * groups()); return this->output_pixel_stride_; } } inline uint32_t dilated_kernel_height() const { return (kernel_height() - 1) * dilation_height() + 1; } inline uint32_t dilated_kernel_width() const { return (kernel_width() - 1) * dilation_width() + 1; } inline size_t output_height() const { return stride_height() * (input_height() - 1) + adjustment_height() + dilated_kernel_height() - padding_height(); } inline size_t output_width() const { return stride_width() * (input_width() - 1) + adjustment_width() + dilated_kernel_width() - padding_width(); } inline DeconvolutionOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) { assert(next_input_height >= 1); assert(next_input_width >= 1); this->next_input_height_ = next_input_height; this->next_input_width_ = next_input_width; return *this; } inline DeconvolutionOperatorTester& next_input_height(uint32_t next_input_height) { assert(next_input_height >= 1); this->next_input_height_ = next_input_height; return *this; } inline uint32_t next_input_height() const { if (this->next_input_height_ == 0) { return input_height(); } else { return this->next_input_height_; } } inline DeconvolutionOperatorTester& next_input_width(uint32_t next_input_width) { assert(next_input_width >= 1); this->next_input_width_ = next_input_width; return *this; } inline uint32_t next_input_width() const { if (this->next_input_width_ == 0) { return input_width(); } else { return this->next_input_width_; } } inline size_t next_output_height() const { return stride_height() * (next_input_height() - 1) + adjustment_height() + dilated_kernel_height() - padding_height(); } inline size_t next_output_width() const { return stride_width() * (next_input_width() - 1) + adjustment_width() + dilated_kernel_width() - padding_width(); } inline DeconvolutionOperatorTester& next_batch_size(size_t next_batch_size) { assert(next_batch_size >= 1); this->next_batch_size_ = next_batch_size; return *this; } inline size_t next_batch_size() const { if (this->next_batch_size_ == 0) { return batch_size(); } else { return this->next_batch_size_; } } inline DeconvolutionOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline DeconvolutionOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline DeconvolutionOperatorTester& has_bias(bool has_bias) { this->has_bias_ = has_bias; return *this; } inline bool has_bias() const { return this->has_bias_; } inline DeconvolutionOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); const uint8_t input_zero_point = 127; const uint8_t kernel_zero_point = 127; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Create, setup, run, and destroy Deconvolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t deconvolution_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_deconvolution2d_nhwc_qu8( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), stride_height(), stride_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_pixel_stride(), output_pixel_stride(), input_zero_point, 1.0f /* input scale */, kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, qmin(), qmax(), padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0, &deconvolution_op)); // Smart pointer to automatically delete deconvolution_op. std::unique_ptr auto_deconvolution_op(deconvolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_qu8( deconvolution_op, batch_size(), input_height(), input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels()); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); std::fill(output_ref.begin(), output_ref.end(), 0.0f); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = qmin() == 0 ? -std::numeric_limits::infinity() : accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = qmax() == 255 ? std::numeric_limits::infinity() : accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Deconvolution operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t deconvolution_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_deconvolution2d_nhwc_f32( padding_tf_same() ? 0 : padding_top(), padding_tf_same() ? 0 : padding_right(), padding_tf_same() ? 0 : padding_bottom(), padding_tf_same() ? 0 : padding_left(), kernel_height(), kernel_width(), stride_height(), stride_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_pixel_stride(), output_pixel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, padding_tf_same() ? XNN_FLAG_TENSORFLOW_SAME_PADDING : 0, &deconvolution_op)); // Smart pointer to automatically delete deconvolution_op. std::unique_ptr auto_deconvolution_op(deconvolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_f32( deconvolution_op, batch_size(), input_height(), input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestSetupQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i32rng = std::bind(std::uniform_int_distribution(-10000, 10000), rng); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint8_t) + std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels())); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels())); std::vector accumulators(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_accumulators(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); const uint8_t input_zero_point = 127; const uint8_t kernel_zero_point = 127; for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); std::generate(bias.begin(), bias.end(), std::ref(i32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results, without renormalization. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(accumulators.begin(), accumulators.end(), 0); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { accumulators[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max(std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); // Renormalize reference results. std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Create, setup, and run Deconvolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t deconvolution_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_deconvolution2d_nhwc_qu8( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), stride_height(), stride_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_pixel_stride(), output_pixel_stride(), input_zero_point, 1.0f /* input scale */, kernel_zero_point, 1.0f /* kernel scale */, kernel.data(), has_bias() ? bias.data() : nullptr, output_zero_point, output_scale, qmin(), qmax(), 0, &deconvolution_op)); // Smart pointer to automatically delete deconvolution_op. std::unique_ptr auto_deconvolution_op(deconvolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_qu8( deconvolution_op, batch_size(), input_height(), input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results for the second run, including renormalization. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(next_accumulators.begin(), next_accumulators.end(), 0); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_accumulators[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += (int32_t(input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic]) - int32_t(input_zero_point)) * (int32_t(kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } std::transform(next_accumulators.cbegin(), next_accumulators.cend(), next_output_ref.begin(), [this, output_scale, output_zero_point](int32_t x) -> double { return std::max(std::min(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point); }); // Setup and run Deconvolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_qu8( deconvolution_op, next_batch_size(), next_input_height(), next_input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_LE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmax())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_GE(int32_t(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]), int32_t(qmin())) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], double(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c]) - double(output_zero_point), 0.9) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } void TestSetupF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(0.1f, 1.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + std::max( (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + groups() * group_input_channels(), (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + groups() * group_input_channels())); std::vector kernel(groups() * group_output_channels() * kernel_height() * kernel_width() * group_input_channels()); std::vector bias(groups() * group_output_channels()); std::vector output(std::max( (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + groups() * group_output_channels(), (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + groups() * group_output_channels())); std::vector output_ref(batch_size() * output_height() * output_width() * groups() * group_output_channels()); std::vector next_output_ref(next_batch_size() * next_output_height() * next_output_width() * groups() * group_output_channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); std::generate(bias.begin(), bias.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results, without clamping. if (has_bias()) { for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(output_ref.begin(), output_ref.end(), 0.0f); } for (size_t i = 0; i < batch_size(); i++) { for (size_t oy = 0; oy < output_height(); oy++) { for (size_t ox = 0; ox < output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { output_ref[(((i * output_height() + oy) * output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * input_height() + iy) * input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin()); const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, and run Deconvolution operator once. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t deconvolution_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_deconvolution2d_nhwc_f32( padding_top(), padding_right(), padding_bottom(), padding_left(), kernel_height(), kernel_width(), stride_height(), stride_width(), dilation_height(), dilation_width(), groups(), group_input_channels(), group_output_channels(), input_pixel_stride(), output_pixel_stride(), kernel.data(), has_bias() ? bias.data() : nullptr, output_min, output_max, 0, &deconvolution_op)); // Smart pointer to automatically delete deconvolution_op. std::unique_ptr auto_deconvolution_op(deconvolution_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_f32( deconvolution_op, batch_size(), input_height(), input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results of the first run. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(output_ref[(((i * output_height() + y) * output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } // Re-generate data for the second run. std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), nanf("")); // Compute reference results for the second run, including clamping. if (has_bias()) { for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] = bias[g * group_output_channels() + oc]; } } } } } } else { std::fill(next_output_ref.begin(), next_output_ref.end(), 0.0f); } for (size_t i = 0; i < next_batch_size(); i++) { for (size_t oy = 0; oy < next_output_height(); oy++) { for (size_t ox = 0; ox < next_output_width(); ox++) { for (size_t ky = 0; ky < kernel_height(); ky++) { const size_t y = oy + padding_top() - ky * dilation_height(); const size_t iy = y / stride_height(); if (iy * stride_height() == y && iy < next_input_height()) { for (size_t kx = 0; kx < kernel_width(); kx++) { const size_t x = ox + padding_left() - kx * dilation_width(); const size_t ix = x / stride_width(); if (ix * stride_width() == x && ix < next_input_width()) { for (size_t g = 0; g < groups(); g++) { for (size_t oc = 0; oc < group_output_channels(); oc++) { for (size_t ic = 0; ic < group_input_channels(); ic++) { next_output_ref[(((i * next_output_height() + oy) * next_output_width() + ox) * groups() + g) * group_output_channels() + oc] += input[((i * next_input_height() + iy) * next_input_width() + ix) * input_pixel_stride() + g * group_input_channels() + ic] * kernel[(((g * group_output_channels() + oc) * kernel_height() + ky) * kernel_width() + kx) * group_input_channels() + ic]; } } } } } } } } } } for (float& value : next_output_ref) { value = std::max(std::min(value, output_max), output_min); } // Setup and run Deconvolution operator the second time, and destroy the operator. ASSERT_EQ(xnn_status_success, xnn_setup_deconvolution2d_nhwc_f32( deconvolution_op, next_batch_size(), next_input_height(), next_input_width(), adjustment_height(), adjustment_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(deconvolution_op, nullptr /* thread pool */)); // Verify results of the second run. for (size_t i = 0; i < next_batch_size(); i++) { for (size_t y = 0; y < next_output_height(); y++) { for (size_t x = 0; x < next_output_width(); x++) { for (size_t g = 0; g < groups(); g++) { for (size_t c = 0; c < group_output_channels(); c++) { ASSERT_GE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_min) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_LE(output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], output_max) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; ASSERT_NEAR( next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c], output[((i * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + g * group_output_channels() + c], 1.0e-4 * std::abs(next_output_ref[(((i * next_output_height() + y) * next_output_width() + x) * groups() + g) * group_output_channels() + c])) << "(x, y) = (" << x << ", " << y << "), group = " << g << ", channel = " << c; } } } } } } } private: uint32_t padding_top_{0}; uint32_t padding_right_{0}; uint32_t padding_bottom_{0}; uint32_t padding_left_{0}; bool padding_tf_same_{false}; size_t input_height_{1}; size_t input_width_{1}; uint32_t groups_{1}; size_t group_input_channels_{1}; size_t input_pixel_stride_{0}; size_t group_output_channels_{1}; size_t output_pixel_stride_{0}; size_t batch_size_{1}; uint32_t kernel_height_{1}; uint32_t kernel_width_{1}; uint32_t adjustment_height_{0}; uint32_t adjustment_width_{0}; uint32_t dilation_height_{1}; uint32_t dilation_width_{1}; uint32_t stride_height_{1}; uint32_t stride_width_{1}; size_t next_input_height_{0}; size_t next_input_width_{0}; size_t next_batch_size_{0}; uint8_t qmin_{0}; uint8_t qmax_{255}; bool has_bias_{true}; size_t iterations_{1}; };