// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class HardSwishOperatorTester { public: inline HardSwishOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline HardSwishOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return this->channels_; } else { assert(this->input_stride_ >= this->channels_); return this->input_stride_; } } inline HardSwishOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return this->channels_; } else { assert(this->output_stride_ >= this->channels_); return this->output_stride_; } } inline HardSwishOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline HardSwishOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestF16() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-4.0f, 4.0f), rng); auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng); std::vector input(XNN_EXTRA_BYTES / sizeof(uint16_t) + (batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f16rng)); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = fp16_ieee_to_fp32_value(input[i * input_stride() + c]); const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f; output_ref[i * channels() + c] = y; } } // Create, setup, run, and destroy HardSwish operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t hardswish_op = nullptr; xnn_status status = xnn_create_hardswish_nc_f16( channels(), input_stride(), output_stride(), 0, &hardswish_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_NE(nullptr, hardswish_op); // Smart pointer to automatically delete hardswish_op. std::unique_ptr auto_hardswish_op(hardswish_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_hardswish_nc_f16( hardswish_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(hardswish_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-3f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f)) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-4.0f, 4.0f), rng); std::vector input(XNN_EXTRA_BYTES / sizeof(float) + (batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = input[i * input_stride() + c]; const float y = x * std::min(std::max(x + 3.0f, 0.0f), 6.0f) / 6.0f; output_ref[i * channels() + c] = y; } } // Create, setup, run, and destroy HardSwish operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t hardswish_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_hardswish_nc_f32( channels(), input_stride(), output_stride(), 0, &hardswish_op)); ASSERT_NE(nullptr, hardswish_op); // Smart pointer to automatically delete hardswish_op. std::unique_ptr auto_hardswish_op(hardswish_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_hardswish_nc_f32( hardswish_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(hardswish_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(output_ref[i * channels() + c], output[i * output_stride() + c], std::max(1.0e-7f, std::abs(output[i * output_stride() + c]) * 1.0e-6f)) << "at position " << i << ", batch size = " << batch_size() << ", channels = " << channels(); } } } } private: size_t batch_size_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; size_t iterations_{15}; };