// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include <gtest/gtest.h> #include <algorithm> #include <cmath> #include <cassert> #include <cstddef> #include <cstdlib> #include <functional> #include <random> #include <vector> #include <xnnpack.h> class ResizeBilinearOperatorTester { public: inline ResizeBilinearOperatorTester& input_size(size_t input_height, size_t input_width) { assert(input_height >= 1); assert(input_width >= 1); this->input_height_ = input_height; this->input_width_ = input_width; return *this; } inline ResizeBilinearOperatorTester& input_height(size_t input_height) { assert(input_height >= 1); this->input_height_ = input_height; return *this; } inline size_t input_height() const { return this->input_height_; } inline ResizeBilinearOperatorTester& input_width(size_t input_width) { assert(input_width >= 1); this->input_width_ = input_width; return *this; } inline size_t input_width() const { return this->input_width_; } inline ResizeBilinearOperatorTester& output_size(size_t output_height, size_t output_width) { assert(output_height >= 1); assert(output_width >= 1); this->output_height_ = output_height; this->output_width_ = output_width; return *this; } inline ResizeBilinearOperatorTester& output_height(size_t output_height) { assert(output_height >= 1); this->output_height_ = output_height; return *this; } inline size_t output_height() const { return this->output_height_; } inline ResizeBilinearOperatorTester& output_width(size_t output_width) { assert(output_width >= 1); this->output_width_ = output_width; return *this; } inline size_t output_width() const { return this->output_width_; } inline float height_scale() const { if (align_corners() && output_height() > 1) { return float(input_height() - 1) / float(output_height() - 1); } else { return float(input_height()) / float(output_height()); } } inline float width_scale() const { if (align_corners() && output_width() > 1) { return float(input_width() - 1) / float(output_width() - 1); } else { return float(input_width()) / float(output_width()); } } inline ResizeBilinearOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline ResizeBilinearOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline ResizeBilinearOperatorTester& input_pixel_stride(size_t input_pixel_stride) { assert(input_pixel_stride != 0); this->input_pixel_stride_ = input_pixel_stride; return *this; } inline size_t input_pixel_stride() const { if (this->input_pixel_stride_ == 0) { return channels(); } else { assert(this->input_pixel_stride_ >= channels()); return this->input_pixel_stride_; } } inline ResizeBilinearOperatorTester& output_pixel_stride(size_t output_pixel_stride) { assert(output_pixel_stride != 0); this->output_pixel_stride_ = output_pixel_stride; return *this; } inline size_t output_pixel_stride() const { if (this->output_pixel_stride_ == 0) { return channels(); } else { assert(this->output_pixel_stride_ >= channels()); return this->output_pixel_stride_; } } inline ResizeBilinearOperatorTester& next_input_size(uint32_t next_input_height, uint32_t next_input_width) { assert(next_input_height >= 1); assert(next_input_width >= 1); this->next_input_height_ = next_input_height; this->next_input_width_ = next_input_width; return *this; } inline ResizeBilinearOperatorTester& next_input_height(uint32_t next_input_height) { assert(next_input_height >= 1); this->next_input_height_ = next_input_height; return *this; } inline uint32_t next_input_height() const { if (this->next_input_height_ == 0) { return input_height(); } else { return this->next_input_height_; } } inline ResizeBilinearOperatorTester& next_input_width(uint32_t next_input_width) { assert(next_input_width >= 1); this->next_input_width_ = next_input_width; return *this; } inline uint32_t next_input_width() const { if (this->next_input_width_ == 0) { return input_width(); } else { return this->next_input_width_; } } inline ResizeBilinearOperatorTester& next_batch_size(size_t next_batch_size) { assert(next_batch_size >= 1); this->next_batch_size_ = next_batch_size; return *this; } inline size_t next_batch_size() const { if (this->next_batch_size_ == 0) { return batch_size(); } else { return this->next_batch_size_; } } inline ResizeBilinearOperatorTester& align_corners(bool align_corners) { this->align_corners_ = align_corners; return *this; } inline bool align_corners() const { return this->align_corners_; } inline ResizeBilinearOperatorTester& tf_legacy_mode(bool tf_legacy_mode) { this->tf_legacy_mode_ = tf_legacy_mode; return *this; } inline bool tf_legacy_mode() const { return this->tf_legacy_mode_; } inline ResizeBilinearOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestNHWCxF32() const { if (align_corners()) { ASSERT_FALSE(tf_legacy_mode()); } std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); std::vector<float> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results. const float offset = (tf_legacy_mode() || align_corners()) ? 0.0f : 0.5f; for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) { for (size_t output_y = 0; output_y < output_height(); output_y++) { const float input_y = (float(output_y) + offset) * height_scale() - offset; const int64_t input_y_top = std::max<int64_t>(int64_t(std::floor(input_y)), 0); const int64_t input_y_bottom = std::min<int64_t>(int64_t(std::ceil(input_y)), input_height() - 1); const float y_alpha = input_y - std::floor(input_y); for (size_t output_x = 0; output_x < output_width(); output_x++) { const float input_x = (float(output_x) + offset) * width_scale() - offset; const int64_t input_x_left = std::max<int64_t>(int64_t(std::floor(input_x)), 0); const int64_t input_x_right = std::min<int64_t>(int64_t(std::ceil(input_x)), input_width() - 1); const float x_alpha = input_x - std::floor(input_x); for (size_t c = 0; c < channels(); c++) { output_ref[((batch_index * output_height() + output_y) * output_width() + output_x) * channels() + c] = input[((batch_index * input_height() + input_y_top) * input_width() + input_x_left) * input_pixel_stride() + c] * (1.0f - y_alpha) * (1.0f - x_alpha) + input[((batch_index * input_height() + input_y_top) * input_width() + input_x_right) * input_pixel_stride() + c] * (1.0f - y_alpha) * x_alpha + input[((batch_index * input_height() + input_y_bottom) * input_width() + input_x_left) * input_pixel_stride() + c] * y_alpha * (1.0f - x_alpha) + input[((batch_index * input_height() + input_y_bottom) * input_width() + input_x_right) * input_pixel_stride() + c] * y_alpha * x_alpha; } } } } // Create, setup, run, and destroy Resize Bilinear operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t resize_bilinear_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_resize_bilinear2d_nhwc_f32( channels(), input_pixel_stride(), output_pixel_stride(), (align_corners() ? XNN_FLAG_ALIGN_CORNERS : 0) | (tf_legacy_mode() ? XNN_FLAG_TENSORFLOW_LEGACY_MODE : 0), &resize_bilinear_op)); ASSERT_NE(nullptr, resize_bilinear_op); // Smart pointer to automatically delete resize_bilinear_op. std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_resize_bilinear_op(resize_bilinear_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_resize_bilinear2d_nhwc_f32( resize_bilinear_op, batch_size(), input_height(), input_width(), output_height(), output_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(output[((i * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_ref[((i * output_height() + y) * output_width() + x) * channels() + c], std::abs(output_ref[((i * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-5f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } void TestNCHWxF32() const { if (align_corners()) { ASSERT_FALSE(tf_legacy_mode()); } std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); std::vector<float> input((batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector<float> output((batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels()); std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results. const float offset = (tf_legacy_mode() || align_corners()) ? 0.0f : 0.5f; const int64_t input_num_pixels = input_height() * input_width(); const int64_t input_num_elements = input_num_pixels * input_pixel_stride(); const int64_t output_num_pixels = output_height() * output_width(); const int64_t output_num_elements = output_num_pixels * channels(); for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) { for (size_t output_y = 0; output_y < output_height(); output_y++) { const float input_y = (float(output_y) + offset) * height_scale() - offset; const int64_t input_y_top = std::max<int64_t>(int64_t(std::floor(input_y)), 0); const int64_t input_y_bottom = std::min<int64_t>(int64_t(std::ceil(input_y)), input_height() - 1); const float y_alpha = input_y - std::floor(input_y); for (size_t output_x = 0; output_x < output_width(); output_x++) { const float input_x = (float(output_x) + offset) * width_scale() - offset; const int64_t input_x_left = std::max<int64_t>(int64_t(std::floor(input_x)), 0); const int64_t input_x_right = std::min<int64_t>(int64_t(std::ceil(input_x)), input_width() - 1); const float x_alpha = input_x - std::floor(input_x); for (size_t c = 0; c < channels(); c++) { output_ref[batch_index * output_num_elements + c * output_num_pixels + output_y * output_width() + output_x] = input[batch_index * input_num_elements + c * input_num_pixels + input_y_top * input_width() + input_x_left] * (1.0f - y_alpha) * (1.0f - x_alpha) + input[batch_index * input_num_elements + c * input_num_pixels + input_y_top * input_width() + input_x_right] * (1.0f - y_alpha) * x_alpha + input[batch_index * input_num_elements + c * input_num_pixels + input_y_bottom * input_width() + input_x_left] * y_alpha * (1.0f - x_alpha) + input[batch_index * input_num_elements + c * input_num_pixels + input_y_bottom * input_width() + input_x_right] * y_alpha * x_alpha; } } } } // Create, setup, run, and destroy Resize Bilinear operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t resize_bilinear_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_resize_bilinear2d_nchw_f32( channels(), input_pixel_stride(), output_pixel_stride(), (align_corners() ? XNN_FLAG_ALIGN_CORNERS : 0) | (tf_legacy_mode() ? XNN_FLAG_TENSORFLOW_LEGACY_MODE : 0), &resize_bilinear_op)); ASSERT_NE(nullptr, resize_bilinear_op); // Smart pointer to automatically delete resize_bilinear_op. std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_resize_bilinear_op(resize_bilinear_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_resize_bilinear2d_nchw_f32( resize_bilinear_op, batch_size(), input_height(), input_width(), output_height(), output_width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t y = 0; y < output_height(); y++) { for (size_t x = 0; x < output_width(); x++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(output[i * output_num_elements + c * output_num_pixels + y * output_width() + x], output_ref[i * output_num_elements + c * output_num_pixels + y * output_width() + x], 1.0e-6f) << "in batch index " << i << ", pixel (" << y << ", " << x << "), channel " << c; } } } } } } // void TestSetupF32() const { // std::random_device random_device; // auto rng = std::mt19937(random_device()); // auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng); // std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + std::max( // (batch_size() * input_height() * input_width() - 1) * input_pixel_stride() + channels(), // (next_batch_size() * next_input_height() * next_input_width() - 1) * input_pixel_stride() + channels())); // std::vector<float> output(std::max( // (batch_size() * output_height() * output_width() - 1) * output_pixel_stride() + channels(), // (next_batch_size() * next_output_height() * next_output_width() - 1) * output_pixel_stride() + channels())); // std::vector<float> output_ref(batch_size() * output_height() * output_width() * channels()); // std::vector<float> next_output_ref(next_batch_size() * next_output_height() * next_output_width() * channels()); // for (size_t iteration = 0; iteration < iterations(); iteration++) { // std::generate(input.begin(), input.end(), std::ref(f32rng)); // std::fill(output.begin(), output.end(), std::nanf("")); // // Compute reference results, without clamping. // for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) { // for (size_t output_y = 0; output_y < output_height(); output_y++) { // for (size_t output_x = 0; output_x < output_width(); output_x++) { // for (size_t c = 0; c < channels(); c++) { // float acc = 0.0f; // size_t n = 0; // for (size_t py = 0; py < pooling_height(); py++) { // const size_t iy = output_y * stride_height() + py - padding_top(); // for (size_t px = 0; px < pooling_width(); px++) { // const size_t input_x = output_x * stride_width() + px - padding_left(); // if (input_x < input_width() && iy < input_height()) { // acc += input[((batch_index * input_height() + iy) * input_width() + input_x) * input_pixel_stride() + c]; // n += 1; // } // } // } // output_ref[((batch_index * output_height() + output_y) * output_width() + output_x) * channels() + c] = acc / float(n); // } // } // } // } // // Compute clamping parameters. // const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); // const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); // const float accumulated_range = accumulated_max - accumulated_min; // const float output_min = accumulated_range == 0.0f ? // -std::numeric_limits<float>::infinity() : // accumulated_min + accumulated_range / 255.0f * float(qmin()); // const float output_max = accumulated_range == 0.0f ? // +std::numeric_limits<float>::infinity() : // accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // // Clamp reference results. // for (float& value : output_ref) { // value = std::max(std::min(value, output_max), output_min); // } // // Create, setup, and run Average Pooling operator once. // ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); // xnn_operator_t resize_bilinear_op = nullptr; // ASSERT_EQ(xnn_status_success, // xnn_create_average_pooling2d_nhwc_f32( // padding_top(), padding_right(), padding_bottom(), padding_left(), // pooling_height(), pooling_width(), // stride_height(), stride_width(), // channels(), input_pixel_stride(), output_pixel_stride(), // output_min, output_max, // 0, &resize_bilinear_op)); // ASSERT_NE(nullptr, resize_bilinear_op); // ASSERT_EQ(xnn_status_success, // xnn_setup_average_pooling2d_nhwc_f32( // resize_bilinear_op, // batch_size(), input_height(), input_width(), // input.data(), output.data(), // nullptr /* thread pool */)); // ASSERT_EQ(xnn_status_success, // xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */)); // // Verify results of the first run. // for (size_t batch_index = 0; batch_index < batch_size(); batch_index++) { // for (size_t y = 0; y < output_height(); y++) { // for (size_t x = 0; x < output_width(); x++) { // for (size_t c = 0; c < channels(); c++) { // ASSERT_LE(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_max); // ASSERT_GE(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c], output_min); // ASSERT_NEAR(output[((batch_index * output_height() + y) * output_width() + x) * output_pixel_stride() + c], // output_ref[((batch_index * output_height() + y) * output_width() + x) * channels() + c], // std::abs(output_ref[((batch_index * output_height() + y) * output_width() + x) * channels() + c]) * 1.0e-6f) << // "in batch index " << batch_index << ", pixel (" << y << ", " << x << "), channel " << c; // } // } // } // } // // Re-generate data for the second run. // std::generate(input.begin(), input.end(), std::ref(f32rng)); // std::fill(output.begin(), output.end(), std::nanf("")); // // Compute reference results for the second run. // for (size_t batch_index = 0; batch_index < next_batch_size(); batch_index++) { // for (size_t output_y = 0; output_y < next_output_height(); output_y++) { // for (size_t output_x = 0; output_x < next_output_width(); output_x++) { // for (size_t c = 0; c < channels(); c++) { // float acc = 0.0f; // int32_t n = 0; // for (size_t py = 0; py < pooling_height(); py++) { // const size_t iy = output_y * stride_height() + py - padding_top(); // for (size_t px = 0; px < pooling_width(); px++) { // const size_t input_x = output_x * stride_width() + px - padding_left(); // if (input_x < next_input_width() && iy < next_input_height()) { // acc += input[((batch_index * next_input_height() + iy) * next_input_width() + input_x) * input_pixel_stride() + c]; // n += 1; // } // } // } // next_output_ref[((batch_index * next_output_height() + output_y) * next_output_width() + output_x) * channels() + c] = // std::max(std::min(acc / float(n), output_max), output_min); // } // } // } // } // // Setup and run Average Pooling operator the second time, and destroutput_y the operator. // ASSERT_EQ(xnn_status_success, // xnn_setup_average_pooling2d_nhwc_f32( // resize_bilinear_op, // next_batch_size(), next_input_height(), next_input_width(), // input.data(), output.data(), // nullptr /* thread pool */)); // ASSERT_EQ(xnn_status_success, // xnn_run_operator(resize_bilinear_op, nullptr /* thread pool */)); // ASSERT_EQ(xnn_status_success, // xnn_delete_operator(resize_bilinear_op)); // resize_bilinear_op = nullptr; // // Verify results of the second run. // for (size_t batch_index = 0; batch_index < next_batch_size(); batch_index++) { // for (size_t y = 0; y < next_output_height(); y++) { // for (size_t x = 0; x < next_output_width(); x++) { // for (size_t c = 0; c < channels(); c++) { // ASSERT_LE(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_max); // ASSERT_GE(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], output_min); // ASSERT_NEAR(output[((batch_index * next_output_height() + y) * next_output_width() + x) * output_pixel_stride() + c], // next_output_ref[((batch_index * next_output_height() + y) * next_output_width() + x) * channels() + c], // std::abs(next_output_ref[((batch_index * next_output_height() + y) * next_output_width() + x) * channels() + c]) * 1.0e-6f) << // "in batch index " << batch_index << ", pixel (" << y << ", " << x << "), channel " << c; // } // } // } // } // } // } private: size_t input_height_{1}; size_t input_width_{1}; size_t output_height_{1}; size_t output_width_{1}; size_t channels_{1}; size_t batch_size_{1}; size_t input_pixel_stride_{0}; size_t output_pixel_stride_{0}; size_t next_input_height_{0}; size_t next_input_width_{0}; size_t next_batch_size_{0}; bool align_corners_{false}; bool tf_legacy_mode_{false}; size_t iterations_{1}; };