/* SHA-256 and SHA-512 implementation based on code by Oliver Gay * under a BSD-style license. See below. */ /* * FIPS 180-2 SHA-224/256/384/512 implementation * Last update: 02/02/2007 * Issue date: 04/30/2005 * * Copyright (C) 2005, 2007 Olivier Gay * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "avb_crypto_ops_impl.h" #define SHFR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n))) #define ROTL(x, n) ((x << n) | (x >> ((sizeof(x) << 3) - n))) #define CH(x, y, z) ((x & y) ^ (~x & z)) #define MAJ(x, y, z) ((x & y) ^ (x & z) ^ (y & z)) #define SHA256_F1(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define SHA256_F2(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define SHA256_F3(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHFR(x, 3)) #define SHA256_F4(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHFR(x, 10)) #define UNPACK32(x, str) \ { \ *((str) + 3) = (uint8_t)((x)); \ *((str) + 2) = (uint8_t)((x) >> 8); \ *((str) + 1) = (uint8_t)((x) >> 16); \ *((str) + 0) = (uint8_t)((x) >> 24); \ } #define UNPACK64(x, str) \ { \ *((str) + 7) = (uint8_t)x; \ *((str) + 6) = (uint8_t)((uint64_t)x >> 8); \ *((str) + 5) = (uint8_t)((uint64_t)x >> 16); \ *((str) + 4) = (uint8_t)((uint64_t)x >> 24); \ *((str) + 3) = (uint8_t)((uint64_t)x >> 32); \ *((str) + 2) = (uint8_t)((uint64_t)x >> 40); \ *((str) + 1) = (uint8_t)((uint64_t)x >> 48); \ *((str) + 0) = (uint8_t)((uint64_t)x >> 56); \ } #define PACK32(str, x) \ { \ *(x) = ((uint32_t) * ((str) + 3)) | ((uint32_t) * ((str) + 2) << 8) | \ ((uint32_t) * ((str) + 1) << 16) | \ ((uint32_t) * ((str) + 0) << 24); \ } /* Macros used for loops unrolling */ #define SHA256_SCR(i) \ { w[i] = SHA256_F4(w[i - 2]) + w[i - 7] + SHA256_F3(w[i - 15]) + w[i - 16]; } #define SHA256_EXP(a, b, c, d, e, f, g, h, j) \ { \ t1 = wv[h] + SHA256_F2(wv[e]) + CH(wv[e], wv[f], wv[g]) + sha256_k[j] + \ w[j]; \ t2 = SHA256_F1(wv[a]) + MAJ(wv[a], wv[b], wv[c]); \ wv[d] += t1; \ wv[h] = t1 + t2; \ } static const uint32_t sha256_h0[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; static const uint32_t sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; /* SHA-256 implementation */ void avb_sha256_init(AvbSHA256Ctx* avb_ctx) { AvbSHA256ImplCtx* ctx = (AvbSHA256ImplCtx*)avb_ctx->reserved; #ifndef UNROLL_LOOPS int i; for (i = 0; i < 8; i++) { ctx->h[i] = sha256_h0[i]; } #else ctx->h[0] = sha256_h0[0]; ctx->h[1] = sha256_h0[1]; ctx->h[2] = sha256_h0[2]; ctx->h[3] = sha256_h0[3]; ctx->h[4] = sha256_h0[4]; ctx->h[5] = sha256_h0[5]; ctx->h[6] = sha256_h0[6]; ctx->h[7] = sha256_h0[7]; #endif /* !UNROLL_LOOPS */ ctx->len = 0; ctx->tot_len = 0; } static void SHA256_transform(AvbSHA256ImplCtx* ctx, const uint8_t* message, size_t block_nb) { uint32_t w[64]; uint32_t wv[8]; uint32_t t1, t2; const unsigned char* sub_block; size_t i; #ifndef UNROLL_LOOPS size_t j; #endif for (i = 0; i < block_nb; i++) { sub_block = message + (i << 6); #ifndef UNROLL_LOOPS for (j = 0; j < 16; j++) { PACK32(&sub_block[j << 2], &w[j]); } for (j = 16; j < 64; j++) { SHA256_SCR(j); } for (j = 0; j < 8; j++) { wv[j] = ctx->h[j]; } for (j = 0; j < 64; j++) { t1 = wv[7] + SHA256_F2(wv[4]) + CH(wv[4], wv[5], wv[6]) + sha256_k[j] + w[j]; t2 = SHA256_F1(wv[0]) + MAJ(wv[0], wv[1], wv[2]); wv[7] = wv[6]; wv[6] = wv[5]; wv[5] = wv[4]; wv[4] = wv[3] + t1; wv[3] = wv[2]; wv[2] = wv[1]; wv[1] = wv[0]; wv[0] = t1 + t2; } for (j = 0; j < 8; j++) { ctx->h[j] += wv[j]; } #else PACK32(&sub_block[0], &w[0]); PACK32(&sub_block[4], &w[1]); PACK32(&sub_block[8], &w[2]); PACK32(&sub_block[12], &w[3]); PACK32(&sub_block[16], &w[4]); PACK32(&sub_block[20], &w[5]); PACK32(&sub_block[24], &w[6]); PACK32(&sub_block[28], &w[7]); PACK32(&sub_block[32], &w[8]); PACK32(&sub_block[36], &w[9]); PACK32(&sub_block[40], &w[10]); PACK32(&sub_block[44], &w[11]); PACK32(&sub_block[48], &w[12]); PACK32(&sub_block[52], &w[13]); PACK32(&sub_block[56], &w[14]); PACK32(&sub_block[60], &w[15]); SHA256_SCR(16); SHA256_SCR(17); SHA256_SCR(18); SHA256_SCR(19); SHA256_SCR(20); SHA256_SCR(21); SHA256_SCR(22); SHA256_SCR(23); SHA256_SCR(24); SHA256_SCR(25); SHA256_SCR(26); SHA256_SCR(27); SHA256_SCR(28); SHA256_SCR(29); SHA256_SCR(30); SHA256_SCR(31); SHA256_SCR(32); SHA256_SCR(33); SHA256_SCR(34); SHA256_SCR(35); SHA256_SCR(36); SHA256_SCR(37); SHA256_SCR(38); SHA256_SCR(39); SHA256_SCR(40); SHA256_SCR(41); SHA256_SCR(42); SHA256_SCR(43); SHA256_SCR(44); SHA256_SCR(45); SHA256_SCR(46); SHA256_SCR(47); SHA256_SCR(48); SHA256_SCR(49); SHA256_SCR(50); SHA256_SCR(51); SHA256_SCR(52); SHA256_SCR(53); SHA256_SCR(54); SHA256_SCR(55); SHA256_SCR(56); SHA256_SCR(57); SHA256_SCR(58); SHA256_SCR(59); SHA256_SCR(60); SHA256_SCR(61); SHA256_SCR(62); SHA256_SCR(63); wv[0] = ctx->h[0]; wv[1] = ctx->h[1]; wv[2] = ctx->h[2]; wv[3] = ctx->h[3]; wv[4] = ctx->h[4]; wv[5] = ctx->h[5]; wv[6] = ctx->h[6]; wv[7] = ctx->h[7]; SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 0); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 1); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 2); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 3); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 4); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 5); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 6); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 7); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 8); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 9); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 10); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 11); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 12); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 13); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 14); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 15); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 16); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 17); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 18); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 19); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 20); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 21); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 22); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 23); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 24); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 25); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 26); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 27); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 28); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 29); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 30); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 31); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 32); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 33); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 34); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 35); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 36); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 37); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 38); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 39); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 40); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 41); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 42); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 43); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 44); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 45); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 46); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 47); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 48); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 49); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 50); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 51); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 52); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 53); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 54); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 55); SHA256_EXP(0, 1, 2, 3, 4, 5, 6, 7, 56); SHA256_EXP(7, 0, 1, 2, 3, 4, 5, 6, 57); SHA256_EXP(6, 7, 0, 1, 2, 3, 4, 5, 58); SHA256_EXP(5, 6, 7, 0, 1, 2, 3, 4, 59); SHA256_EXP(4, 5, 6, 7, 0, 1, 2, 3, 60); SHA256_EXP(3, 4, 5, 6, 7, 0, 1, 2, 61); SHA256_EXP(2, 3, 4, 5, 6, 7, 0, 1, 62); SHA256_EXP(1, 2, 3, 4, 5, 6, 7, 0, 63); ctx->h[0] += wv[0]; ctx->h[1] += wv[1]; ctx->h[2] += wv[2]; ctx->h[3] += wv[3]; ctx->h[4] += wv[4]; ctx->h[5] += wv[5]; ctx->h[6] += wv[6]; ctx->h[7] += wv[7]; #endif /* !UNROLL_LOOPS */ } } void avb_sha256_update(AvbSHA256Ctx* avb_ctx, const uint8_t* data, size_t len) { AvbSHA256ImplCtx* ctx = (AvbSHA256ImplCtx*)avb_ctx->reserved; size_t block_nb; size_t new_len, rem_len, tmp_len; const uint8_t* shifted_data; tmp_len = AVB_SHA256_BLOCK_SIZE - ctx->len; rem_len = len < tmp_len ? len : tmp_len; avb_memcpy(&ctx->block[ctx->len], data, rem_len); if (ctx->len + len < AVB_SHA256_BLOCK_SIZE) { ctx->len += len; return; } new_len = len - rem_len; block_nb = new_len / AVB_SHA256_BLOCK_SIZE; shifted_data = data + rem_len; SHA256_transform(ctx, ctx->block, 1); SHA256_transform(ctx, shifted_data, block_nb); rem_len = new_len % AVB_SHA256_BLOCK_SIZE; avb_memcpy(ctx->block, &shifted_data[block_nb << 6], rem_len); ctx->len = rem_len; ctx->tot_len += (block_nb + 1) << 6; } uint8_t* avb_sha256_final(AvbSHA256Ctx* avb_ctx) { AvbSHA256ImplCtx* ctx = (AvbSHA256ImplCtx*)avb_ctx->reserved; size_t block_nb; size_t pm_len; uint64_t len_b; #ifndef UNROLL_LOOPS size_t i; #endif block_nb = (1 + ((AVB_SHA256_BLOCK_SIZE - 9) < (ctx->len % AVB_SHA256_BLOCK_SIZE))); len_b = (ctx->tot_len + ctx->len) << 3; pm_len = block_nb << 6; avb_memset(ctx->block + ctx->len, 0, pm_len - ctx->len); ctx->block[ctx->len] = 0x80; UNPACK64(len_b, ctx->block + pm_len - 8); SHA256_transform(ctx, ctx->block, block_nb); #ifndef UNROLL_LOOPS for (i = 0; i < 8; i++) { UNPACK32(ctx->h[i], &avb_ctx->buf[i << 2]); } #else UNPACK32(ctx->h[0], &avb_ctx->buf[0]); UNPACK32(ctx->h[1], &avb_ctx->buf[4]); UNPACK32(ctx->h[2], &avb_ctx->buf[8]); UNPACK32(ctx->h[3], &avb_ctx->buf[12]); UNPACK32(ctx->h[4], &avb_ctx->buf[16]); UNPACK32(ctx->h[5], &avb_ctx->buf[20]); UNPACK32(ctx->h[6], &avb_ctx->buf[24]); UNPACK32(ctx->h[7], &avb_ctx->buf[28]); #endif /* !UNROLL_LOOPS */ return avb_ctx->buf; }