// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #define PW_LOG_MODULE_NAME "KVS" #define PW_LOG_LEVEL PW_KVS_LOG_LEVEL #include "pw_kvs/internal/sectors.h" #include "pw_kvs_private/config.h" #include "pw_log/shorter.h" namespace pw::kvs::internal { namespace { // Returns true if the container conatins the value. // TODO: At some point move this to pw_containers, along with adding tests. template bool Contains(const Container& container, const T& value) { return std::find(std::begin(container), std::end(container), value) != std::end(container); } } // namespace Status Sectors::Find(FindMode find_mode, SectorDescriptor** found_sector, size_t size, std::span addresses_to_skip, std::span reserved_addresses) { SectorDescriptor* first_empty_sector = nullptr; bool at_least_two_empty_sectors = (find_mode == kGarbageCollect); // Used for the GC reclaimable bytes check SectorDescriptor* non_empty_least_reclaimable_sector = nullptr; const size_t sector_size_bytes = partition_.sector_size_bytes(); // Build a list of sectors to avoid. // // This is overly strict. reserved_addresses is populated when there are // sectors reserved for a new entry. It is safe to garbage collect into // these sectors, as long as there remains room for the pending entry. These // reserved sectors could also be garbage collected if they have recoverable // space. For simplicitly, avoid both the relocating key's redundant entries // (addresses_to_skip) and the sectors reserved for pending writes // (reserved_addresses). // TODO(hepler): Look into improving garbage collection. size_t sectors_to_skip = 0; for (Address address : addresses_to_skip) { temp_sectors_to_skip_[sectors_to_skip++] = &FromAddress(address); } for (Address address : reserved_addresses) { temp_sectors_to_skip_[sectors_to_skip++] = &FromAddress(address); } DBG("Find sector with %u bytes available, starting with sector %u, %s", unsigned(size), Index(last_new_), (find_mode == kAppendEntry) ? "Append" : "GC"); for (size_t i = 0; i < sectors_to_skip; ++i) { DBG(" Skip sector %u", Index(temp_sectors_to_skip_[i])); } // last_new_ is the sector that was last selected as the "new empty sector" to // write to. This last new sector is used as the starting point for the next // "find a new empty sector to write to" operation. By using the last new // sector as the start point we will cycle which empty sector is selected // next, spreading the wear across all the empty sectors and get a wear // leveling benefit, rather than putting more wear on the lower number // sectors. SectorDescriptor* sector = last_new_; // Look for a sector to use with enough space. The search uses a 3 priority // tier process. // // Tier 1 is sector that already has valid data. During GC only select a // sector that has no reclaimable bytes. Immediately use the first matching // sector that is found. // // Tier 2 is find sectors that are empty/erased. While scanning for a partial // sector, keep track of the first empty sector and if a second empty sector // was seen. If during GC then count the second empty sector as always seen. // // Tier 3 is during garbage collection, find sectors with enough space that // are not empty but have recoverable bytes. Pick the sector with the least // recoverable bytes to minimize the likelyhood of this sector needing to be // garbage collected soon. for (size_t j = 0; j < descriptors_.size(); j++) { sector += 1; if (sector == descriptors_.end()) { sector = descriptors_.begin(); } // Skip sectors in the skip list. if (Contains(std::span(temp_sectors_to_skip_, sectors_to_skip), sector)) { continue; } if (!sector->Empty(sector_size_bytes) && sector->HasSpace(size)) { if ((find_mode == kAppendEntry) || (sector->RecoverableBytes(sector_size_bytes) == 0)) { *found_sector = sector; return OkStatus(); } else { if ((non_empty_least_reclaimable_sector == nullptr) || (non_empty_least_reclaimable_sector->RecoverableBytes( sector_size_bytes) < sector->RecoverableBytes(sector_size_bytes))) { non_empty_least_reclaimable_sector = sector; } } } if (sector->Empty(sector_size_bytes)) { if (first_empty_sector == nullptr) { first_empty_sector = sector; } else { at_least_two_empty_sectors = true; } } } // Tier 2 check: If the scan for a partial sector does not find a suitable // sector, use the first empty sector that was found. Normally it is required // to keep 1 empty sector after the sector found here, but that rule does not // apply during GC. if (first_empty_sector != nullptr && at_least_two_empty_sectors) { DBG(" Found a usable empty sector; returning the first found (%u)", Index(first_empty_sector)); last_new_ = first_empty_sector; *found_sector = first_empty_sector; return OkStatus(); } // Tier 3 check: If we got this far, use the sector with least recoverable // bytes if (non_empty_least_reclaimable_sector != nullptr) { *found_sector = non_empty_least_reclaimable_sector; DBG(" Found a usable sector %u, with %u B recoverable, in GC", Index(*found_sector), unsigned((*found_sector)->RecoverableBytes(sector_size_bytes))); return OkStatus(); } // No sector was found. DBG(" Unable to find a usable sector"); *found_sector = nullptr; return Status::ResourceExhausted(); } SectorDescriptor& Sectors::WearLeveledSectorFromIndex(size_t idx) const { return descriptors_[(Index(last_new_) + 1 + idx) % descriptors_.size()]; } // TODO: Consider breaking this function into smaller sub-chunks. SectorDescriptor* Sectors::FindSectorToGarbageCollect( std::span reserved_addresses) const { const size_t sector_size_bytes = partition_.sector_size_bytes(); SectorDescriptor* sector_candidate = nullptr; size_t candidate_bytes = 0; // Build a vector of sectors to avoid. for (size_t i = 0; i < reserved_addresses.size(); ++i) { temp_sectors_to_skip_[i] = &FromAddress(reserved_addresses[i]); DBG(" Skip sector %u", Index(reserved_addresses[i])); } const std::span sectors_to_skip(temp_sectors_to_skip_, reserved_addresses.size()); // Step 1: Try to find a sectors with stale keys and no valid keys (no // relocation needed). Use the first such sector found, as that will help the // KVS "rotate" around the partition. Initially this would select the sector // with the most reclaimable space, but that can cause GC sector selection to // "ping-pong" between two sectors when updating large keys. for (size_t i = 0; i < descriptors_.size(); ++i) { SectorDescriptor& sector = WearLeveledSectorFromIndex(i); if ((sector.valid_bytes() == 0) && (sector.RecoverableBytes(sector_size_bytes) > 0) && !Contains(sectors_to_skip, §or)) { sector_candidate = §or; break; } } // Step 2: If step 1 yields no sectors, just find the sector with the most // reclaimable bytes but no addresses to avoid. if (sector_candidate == nullptr) { for (size_t i = 0; i < descriptors_.size(); ++i) { SectorDescriptor& sector = WearLeveledSectorFromIndex(i); if ((sector.RecoverableBytes(sector_size_bytes) > candidate_bytes) && !Contains(sectors_to_skip, §or)) { sector_candidate = §or; candidate_bytes = sector.RecoverableBytes(sector_size_bytes); } } } // Step 3: If no sectors with reclaimable bytes, select the sector with the // most free bytes. This at least will allow entries of existing keys to get // spread to other sectors, including sectors that already have copies of the // current key being written. if (sector_candidate == nullptr) { for (size_t i = 0; i < descriptors_.size(); ++i) { SectorDescriptor& sector = WearLeveledSectorFromIndex(i); if ((sector.valid_bytes() > candidate_bytes) && !Contains(sectors_to_skip, §or)) { sector_candidate = §or; candidate_bytes = sector.valid_bytes(); DBG(" Doing GC on sector with no reclaimable bytes!"); } } } if (sector_candidate != nullptr) { DBG("Found sector %u to Garbage Collect, %u recoverable bytes", Index(sector_candidate), unsigned(sector_candidate->RecoverableBytes(sector_size_bytes))); } else { DBG("Unable to find sector to garbage collect!"); } return sector_candidate; } } // namespace pw::kvs::internal