// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include "bench/utils.h" #ifdef BENCHMARK_TENSORFLOW_LITE #include "flatbuffers/include/flatbuffers/flatbuffers.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/kernels/register.h" #include "tensorflow/lite/model.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/version.h" #endif // BENCHMARK_TENSORFLOW_LITE #ifndef XNN_NO_QU8_OPERATORS static void xnnpack_softmax_qu8(benchmark::State& state) { const size_t batch_size = static_cast(state.range(0)); const size_t channels = static_cast(state.range(1)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), std::ref(rng)); std::vector input(batch_size * channels); std::vector output(batch_size * channels); std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t softmax_op = nullptr; status = xnn_create_softmax_nc_qu8( channels, channels /* input stride */, channels /* output stride */, 1.0f /* input scale */, 0 /* output zero point */, 1.0f / 256.0f /* output scale */, 0 /* flags */, &softmax_op); if (status != xnn_status_success || softmax_op == nullptr) { state.SkipWithError("failed to create SoftMax operator"); return; } status = xnn_setup_softmax_nc_qu8( softmax_op, batch_size, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup SoftMax operator"); return; } for (auto _ : state) { status = xnn_run_operator(softmax_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run SoftMax operator"); return; } } status = xnn_delete_operator(softmax_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete SoftMax operator"); return; } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } static void xnnpack_softmax_f32(benchmark::State& state) { const size_t batch_size = static_cast(state.range(0)); const size_t channels = static_cast(state.range(1)); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-100.0f, 100.0f), std::ref(rng)); std::vector input(batch_size * channels + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size * channels); std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); xnn_status status = xnn_initialize(nullptr /* allocator */); if (status != xnn_status_success) { state.SkipWithError("failed to initialize XNNPACK"); return; } xnn_operator_t softmax_op = nullptr; status = xnn_create_softmax_nc_f32( channels, channels /* input stride */, channels /* output stride */, 0 /* flags */, &softmax_op); if (status != xnn_status_success || softmax_op == nullptr) { state.SkipWithError("failed to create SoftMax operator"); return; } status = xnn_setup_softmax_nc_f32( softmax_op, batch_size, input.data(), output.data(), nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to setup SoftMax operator"); return; } for (auto _ : state) { status = xnn_run_operator(softmax_op, nullptr /* thread pool */); if (status != xnn_status_success) { state.SkipWithError("failed to run SoftMax operator"); return; } } status = xnn_delete_operator(softmax_op); if (status != xnn_status_success) { state.SkipWithError("failed to delete SoftMax operator"); return; } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); } #endif // XNN_NO_QU8_OPERATORS #ifdef BENCHMARK_TENSORFLOW_LITE static void tflite_softmax_f32(benchmark::State& state) { const size_t batch_size = state.range(0); const size_t channels = state.range(1); std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-100.0f, 100.0f), std::ref(rng)); flatbuffers::FlatBufferBuilder builder; flatbuffers::Offset operator_code = tflite::CreateOperatorCode(builder, tflite::BuiltinOperator_SOFTMAX); flatbuffers::Offset softmax_options = tflite::CreateSoftmaxOptions(builder, 1.0f /* beta */); flatbuffers::Offset buffers[1] = { tflite::CreateBuffer(builder, builder.CreateVector({})), }; const int32_t input_shape[4] = { static_cast(batch_size), static_cast(1 /* height */), static_cast(1 /* width */), static_cast(channels) }; const int32_t output_shape[4] = { static_cast(batch_size), static_cast(1 /* height */), static_cast(1 /* width */), static_cast(channels) }; flatbuffers::Offset tensors[2] = { tflite::CreateTensor(builder, builder.CreateVector(input_shape, 4), tflite::TensorType_FLOAT32), tflite::CreateTensor(builder, builder.CreateVector(output_shape, 4), tflite::TensorType_FLOAT32), }; const int32_t op_inputs[1] = { 0 }; const int32_t op_outputs[1] = { 1 }; flatbuffers::Offset op = tflite::CreateOperator( builder, 0 /* opcode_index */, builder.CreateVector(op_inputs, 1), builder.CreateVector(op_outputs, 1), tflite::BuiltinOptions_SoftmaxOptions, softmax_options.Union()); const int32_t graph_inputs[1] = { 0 }; const int32_t graph_outputs[1] = { 1 }; flatbuffers::Offset subgraph = tflite::CreateSubGraph( builder, builder.CreateVector(tensors, 2), builder.CreateVector(graph_inputs, 1), builder.CreateVector(graph_outputs, 1), builder.CreateVector(&op, 1)); flatbuffers::Offset description = builder.CreateString("Softmax model"); flatbuffers::Offset model_buffer = tflite::CreateModel(builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1), builder.CreateVector(&subgraph, 1), description, builder.CreateVector(buffers, 1)); builder.Finish(model_buffer); const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); tflite::ops::builtin::BuiltinOpResolver resolver; tflite::InterpreterBuilder interpreterBuilder(model, resolver); std::unique_ptr interpreter; if (interpreterBuilder(&interpreter) != kTfLiteOk) { state.SkipWithError("failed to create TFLite interpreter"); return; } if (interpreter == nullptr) { state.SkipWithError("TFLite interpreter is null"); return; } interpreter->SetNumThreads(1); if (interpreter->AllocateTensors() != kTfLiteOk) { state.SkipWithError("failed to allocate tensors"); return; } std::generate( interpreter->typed_tensor(0), interpreter->typed_tensor(0) + batch_size * channels, std::ref(f32rng)); for (auto _ : state) { if (interpreter->Invoke() != kTfLiteOk) { state.SkipWithError("failed to invoke TFLite interpreter"); return; } } const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); if (cpu_frequency != 0) { state.counters["cpufreq"] = cpu_frequency; } const size_t elements_per_iteration = batch_size * channels; state.counters["elements"] = benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate); const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float); state.counters["bytes"] = benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate); interpreter.reset(); } #endif // BENCHMARK_TENSORFLOW_LITE static void CharacteristicArguments(benchmark::internal::Benchmark* b) { b->ArgNames({"N", "C"}); // CIFAR-10 b->Args({1, 10}); // CIFAR-100 */ b->Args({1, 100}); // ImageNet-1K b->Args({1, 1000}); // ImageNet-1K+1 b->Args({1, 1001}); // ImageNet-22K b->Args({1, 21841}); // ADE20K b->Args({257 * 257, 151}); } #ifndef XNN_NO_QU8_OPERATORS BENCHMARK(xnnpack_softmax_qu8)->Apply(CharacteristicArguments)->UseRealTime(); #endif // XNN_NO_QU8_OPERATORS BENCHMARK(xnnpack_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime(); #ifdef BENCHMARK_TENSORFLOW_LITE BENCHMARK(tflite_softmax_f32)->Apply(CharacteristicArguments)->UseRealTime(); #endif // BENCHMARK_TENSORFLOW_LITE #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif