// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include class SigmoidOperatorTester { public: inline SigmoidOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline SigmoidOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return this->channels_; } else { assert(this->input_stride_ >= this->channels_); return this->input_stride_; } } inline SigmoidOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return this->channels_; } else { assert(this->output_stride_ >= this->channels_); return this->output_stride_; } } inline SigmoidOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline SigmoidOperatorTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline SigmoidOperatorTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline float output_scale() const { return 1.0f / 256.0f; } inline uint8_t output_zero_point() const { return 0; } inline SigmoidOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline SigmoidOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline SigmoidOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const float x = input_scale() * (int32_t(input[i * input_stride() + c]) - int32_t(input_zero_point())); const float sigmoid_x = 1.0f / (1.0f + std::exp(-x)); const float scaled_sigmoid_x = sigmoid_x / output_scale(); float y = scaled_sigmoid_x; y = std::min(y, int32_t(qmax()) - int32_t(output_zero_point())); y = std::max(y, int32_t(qmin()) - int32_t(output_zero_point())); output_ref[i * channels() + c] = y + int32_t(output_zero_point()); } } // Create, setup, run, and destroy Sigmoid operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t sigmoid_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_sigmoid_nc_qu8( channels(), input_stride(), output_stride(), input_zero_point(), input_scale(), output_zero_point(), output_scale(), qmin(), qmax(), 0, &sigmoid_op)); ASSERT_NE(nullptr, sigmoid_op); // Smart pointer to automatically delete sigmoid_op. std::unique_ptr auto_sigmoid_op(sigmoid_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_sigmoid_nc_qu8( sigmoid_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(sigmoid_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(-25.0f, 25.0f), rng); std::vector input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { const double x = input[i * input_stride() + c]; const double exp_x = std::exp(x); const double sigmoid_x = exp_x / (1.0 + exp_x); output_ref[i * channels() + c] = sigmoid_x; } } // Create, setup, run, and destroy Sigmoid operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t sigmoid_op = nullptr; xnn_status status = xnn_create_sigmoid_nc_f32( channels(), input_stride(), output_stride(), 0, &sigmoid_op); ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, sigmoid_op); // Smart pointer to automatically delete sigmoid_op. std::unique_ptr auto_sigmoid_op(sigmoid_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_sigmoid_nc_f32( sigmoid_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(sigmoid_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR( output[i * output_stride() + c], output_ref[i * channels() + c], 5.0e-6); } } } } private: size_t batch_size_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; float input_scale_{0.75f}; uint8_t input_zero_point_{121}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{15}; };