// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include class SoftMaxOperatorTester { public: inline SoftMaxOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline SoftMaxOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return this->channels_; } else { assert(this->input_stride_ >= this->channels_); return this->input_stride_; } } inline SoftMaxOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return this->channels_; } else { assert(this->output_stride_ >= this->channels_); return this->output_stride_; } } inline SoftMaxOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline SoftMaxOperatorTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline SoftMaxOperatorTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline float output_scale() const { return 1.0f / 256.0f; } inline uint8_t output_zero_point() const { return 0; } inline SoftMaxOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto u8rng = std::bind(std::uniform_int_distribution(0, std::numeric_limits::max()), rng); std::vector input((batch_size() - 1) * input_stride() + channels()); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(u8rng)); std::fill(output.begin(), output.end(), 0xA5); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { const int32_t max_input = *std::max_element( input.data() + i * input_stride(), input.data() + i * input_stride() + channels()); float sum_exp = 0.0f; for (size_t c = 0; c < channels(); c++) { sum_exp += std::exp((int32_t(input[i * input_stride() + c]) - max_input) * input_scale()); } for (size_t c = 0; c < channels(); c++) { output_ref[i * channels() + c] = std::exp((int32_t(input[i * input_stride() + c]) - max_input) * input_scale()) / (sum_exp * output_scale()); output_ref[i * channels() + c] = std::min(output_ref[i * channels() + c], 255.0f); } } // Create, setup, run, and destroy SoftMax operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t softmax_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_softmax_nc_qu8( channels(), input_stride(), output_stride(), input_scale(), output_zero_point(), output_scale(), 0, &softmax_op)); ASSERT_NE(nullptr, softmax_op); // Smart pointer to automatically delete softmax_op. std::unique_ptr auto_softmax_op(softmax_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_qu8( softmax_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(softmax_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.6f); } } } } void TestF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto f32rng = std::bind(std::uniform_real_distribution(), rng); std::vector input((batch_size() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output((batch_size() - 1) * output_stride() + channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), std::ref(f32rng)); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results. for (size_t i = 0; i < batch_size(); i++) { const double max_input = *std::max_element( input.data() + i * input_stride(), input.data() + i * input_stride() + channels()); double sum_exp = 0.0; for (size_t c = 0; c < channels(); c++) { sum_exp += std::exp(double(input[i * input_stride() + c]) - max_input); } for (size_t c = 0; c < channels(); c++) { output_ref[i * channels() + c] = std::exp(double(input[i * input_stride() + c]) - max_input) / sum_exp; } } // Create, setup, run, and destroy SoftMax operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t softmax_op = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_softmax_nc_f32( channels(), input_stride(), output_stride(), 0, &softmax_op)); ASSERT_NE(nullptr, softmax_op); // Smart pointer to automatically delete softmax_op. std::unique_ptr auto_softmax_op(softmax_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_softmax_nc_f32( softmax_op, batch_size(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(softmax_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_NEAR( double(output[i * output_stride() + c]), output_ref[i * channels() + c], output_ref[i * channels() + c] * 1.0e-4); } } } } private: size_t batch_size_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; float input_scale_{0.176080093}; uint8_t input_zero_point_{121}; size_t iterations_{15}; };